Effect of tooth profile modification on the durability of planetary hub gears

Q3 Engineering
Ehsan Fatourehchi, M. Mohammadpour, P. King, H. Rahnejat, G. Trimmer, B. Womersley, A. Williams
{"title":"Effect of tooth profile modification on the durability of planetary hub gears","authors":"Ehsan Fatourehchi, M. Mohammadpour, P. King, H. Rahnejat, G. Trimmer, B. Womersley, A. Williams","doi":"10.1504/IJPT.2019.098120","DOIUrl":null,"url":null,"abstract":"Planetary systems offer the advantage of desired speed-torque variation with a lighter, compact and coaxial construction than the traditional gear trains. Frictional losses and noise, vibration and harshness (NVH) refinement are the main concerns. Modification of gear teeth geometry to reduce friction between the mating teeth flanks of vehicular planetary hubs, as well as refining NVH under varying load-speed conditions is one of the remedial actions. However, implementing modifications can result in reduced structural integrity and system durability. Therefore, a contradiction may arise between assuring a high degree of durability and achieving better transmission efficiency, which necessitates detailed system optimisation. An integrated multi-disciplinary analytical approach, including tribology and sub-surface stress analysis is developed. As a preliminary step, tooth contact analysis (TCA) is performed to obtain contact footprint shape of meshing gear teeth pairs, as well as contact kinematics and applied load distribution. Then, an analytical time-efficient elastohydrodynamic lubrication (EHL) analysis of elliptical point contact of crowned spur gear teeth is carried out to observe the effect of gear tip relief modification upon planetary hub sub-surface stresses.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPT.2019.098120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

Planetary systems offer the advantage of desired speed-torque variation with a lighter, compact and coaxial construction than the traditional gear trains. Frictional losses and noise, vibration and harshness (NVH) refinement are the main concerns. Modification of gear teeth geometry to reduce friction between the mating teeth flanks of vehicular planetary hubs, as well as refining NVH under varying load-speed conditions is one of the remedial actions. However, implementing modifications can result in reduced structural integrity and system durability. Therefore, a contradiction may arise between assuring a high degree of durability and achieving better transmission efficiency, which necessitates detailed system optimisation. An integrated multi-disciplinary analytical approach, including tribology and sub-surface stress analysis is developed. As a preliminary step, tooth contact analysis (TCA) is performed to obtain contact footprint shape of meshing gear teeth pairs, as well as contact kinematics and applied load distribution. Then, an analytical time-efficient elastohydrodynamic lubrication (EHL) analysis of elliptical point contact of crowned spur gear teeth is carried out to observe the effect of gear tip relief modification upon planetary hub sub-surface stresses.
齿形修形对行星轮毂齿轮耐久性的影响
行星系统提供所需的速度-扭矩变化的优势与更轻,紧凑和同轴结构比传统的齿轮传动。摩擦损失、噪声、振动和粗糙度(NVH)的改进是主要问题。修改齿轮齿的几何形状以减少车辆行星轮毂配合齿翼之间的摩擦,以及在不同负载速度条件下改善NVH是补救措施之一。然而,实施修改可能会降低结构完整性和系统耐久性。因此,在保证高耐久性和实现更好的传动效率之间可能会产生矛盾,这就需要对系统进行详细的优化。综合多学科的分析方法,包括摩擦学和地下应力分析的发展。作为初步步骤,进行齿接触分析(TCA),以获得啮合齿轮齿对的接触足迹形状,以及接触运动学和载荷分布。在此基础上,对冠直齿椭圆点接触的弹流润滑进行了时效分析,观察了齿尖卸荷修改对行星轮毂次表面应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信