{"title":"Development of a Thermal Stability Method for Phase Appearance and Disappearance Handling in Thermal Compositional Simulators","authors":"M. Heidari, T. Stone","doi":"10.2118/203912-ms","DOIUrl":null,"url":null,"abstract":"\n Thermal compositional simulators rely heavily on multicomponent, multiphase flash calculations for a variety of reasons, including reservoir and wellbore initialization, phase appearance and disappearance, and property calculation. In a mass variable formulation, an isenthalpic flash is used for phase split computation, phase saturation update, component mole fraction update in different phases, and temperatures. A natural variable formulation utilizes an isothermal flash mainly for phase appearance and disappearance as well as computation of component mole fractions in appearing phases.\n Multiphase multicomponent isothermal flash calculations cannot be performed in narrow boiling systems which are very common in the simulation of thermal EOR operations such as Steam-Assisted Gravity Drainage (SAGD) or Steam Flooding (SF). In a narrow boiling point system, pressure and temperature are not linearly independent, and an isothermal flash will fail. In addition, flash calculations are computationally expensive, and reservoir simulators use different techniques to perform them as little as possible.\n A new thermal stability check has been developed that can be used in thermal compositional simulators and replaces an isothermal flash calculation. The new stability check quickly determines the phase state of a fluid sample and can be used as an initial guess for mole fraction of a phase appearing in the next simulation cycle. In this method, primary variables of the simulator are used as input for the stability check immediately after the nonlinear solver update so that computation of global mole fractions is not required. The new stability check can also be used in separator and isenthalpic flash calculations to determine the phase state of a fluid. An algorithm is provided, covering all different transitions of phase states in a thermal compositional simulator. The proposed algorithm is significantly faster than a flash calculation and saves simulation time spent in this calculation, hence the overall speed up is case dependent.\n The new stability check is simple, computationally inexpensive, and robust. It can be used for multicomponent and single-component systems, and we tested it rigorously against real field and synthetic models. The new thermal stability check always predicts the number of phase states correctly and never fails. In this paper, we demonstrate a thermal compositional simulation that is run without performing a single flash calculation.","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203912-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal compositional simulators rely heavily on multicomponent, multiphase flash calculations for a variety of reasons, including reservoir and wellbore initialization, phase appearance and disappearance, and property calculation. In a mass variable formulation, an isenthalpic flash is used for phase split computation, phase saturation update, component mole fraction update in different phases, and temperatures. A natural variable formulation utilizes an isothermal flash mainly for phase appearance and disappearance as well as computation of component mole fractions in appearing phases.
Multiphase multicomponent isothermal flash calculations cannot be performed in narrow boiling systems which are very common in the simulation of thermal EOR operations such as Steam-Assisted Gravity Drainage (SAGD) or Steam Flooding (SF). In a narrow boiling point system, pressure and temperature are not linearly independent, and an isothermal flash will fail. In addition, flash calculations are computationally expensive, and reservoir simulators use different techniques to perform them as little as possible.
A new thermal stability check has been developed that can be used in thermal compositional simulators and replaces an isothermal flash calculation. The new stability check quickly determines the phase state of a fluid sample and can be used as an initial guess for mole fraction of a phase appearing in the next simulation cycle. In this method, primary variables of the simulator are used as input for the stability check immediately after the nonlinear solver update so that computation of global mole fractions is not required. The new stability check can also be used in separator and isenthalpic flash calculations to determine the phase state of a fluid. An algorithm is provided, covering all different transitions of phase states in a thermal compositional simulator. The proposed algorithm is significantly faster than a flash calculation and saves simulation time spent in this calculation, hence the overall speed up is case dependent.
The new stability check is simple, computationally inexpensive, and robust. It can be used for multicomponent and single-component systems, and we tested it rigorously against real field and synthetic models. The new thermal stability check always predicts the number of phase states correctly and never fails. In this paper, we demonstrate a thermal compositional simulation that is run without performing a single flash calculation.