Exploring Embeddings for MIMO Channel Decoding on Quantum Annealers

IF 0.9 Q4 TELECOMMUNICATIONS
Ádám Marosits, Zsolt Tabi, Zsófia Kallus, Péter Vaderna, I. Gódor, Z. Zimborás
{"title":"Exploring Embeddings for MIMO Channel Decoding on Quantum Annealers","authors":"Ádám Marosits, Zsolt Tabi, Zsófia Kallus, Péter Vaderna, I. Gódor, Z. Zimborás","doi":"10.36244/ICJ.2021.1.2","DOIUrl":null,"url":null,"abstract":"Quantum Annealing provides a heuristic method leveraging quantum mechanics for solving Quadratic Unconstrained Binary Optimization problems. Existing Quantum Annealing processing units are readily available via cloud platform access for a wide range of use cases. In particular, a novel device, the D-Wave Advantage has been recently released. In this paper, we study the applicability of Maximum Likelihood (ML) Channel Decoder problems for MIMO scenarios in centralized RAN. The main challenge for exact optimization of ML decoders with ever-increasing demand for higher data rates is the exponential increase of the solution space with problem sizes. Since current 5G solutions can only use approximate methodologies, Kim et al. [1] leveraged Quantum Annealing for large MIMO problems with phase shift keying and quadrature amplitude modulation scenarios. Here, we extend upon their work and present embedding limits for both more complex modulation and higher receiver / transmitter numbers using the Pegasus P16 topology of the D-Wave Advantage system.","PeriodicalId":42504,"journal":{"name":"Infocommunications Journal","volume":"30 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infocommunications Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/ICJ.2021.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 5

Abstract

Quantum Annealing provides a heuristic method leveraging quantum mechanics for solving Quadratic Unconstrained Binary Optimization problems. Existing Quantum Annealing processing units are readily available via cloud platform access for a wide range of use cases. In particular, a novel device, the D-Wave Advantage has been recently released. In this paper, we study the applicability of Maximum Likelihood (ML) Channel Decoder problems for MIMO scenarios in centralized RAN. The main challenge for exact optimization of ML decoders with ever-increasing demand for higher data rates is the exponential increase of the solution space with problem sizes. Since current 5G solutions can only use approximate methodologies, Kim et al. [1] leveraged Quantum Annealing for large MIMO problems with phase shift keying and quadrature amplitude modulation scenarios. Here, we extend upon their work and present embedding limits for both more complex modulation and higher receiver / transmitter numbers using the Pegasus P16 topology of the D-Wave Advantage system.
量子退火炉上MIMO信道解码的嵌入研究
量子退火提供了一种利用量子力学求解二次型无约束二元优化问题的启发式方法。现有的量子退火处理单元可以通过云平台访问,用于广泛的用例。特别是最近推出的新产品“D-Wave Advantage”。在本文中,我们研究了最大似然(ML)信道解码器问题在集中式无线局域网中MIMO场景的适用性。随着对更高数据速率的需求不断增长,精确优化ML解码器的主要挑战是解决方案空间随着问题规模的指数增长。由于目前的5G解决方案只能使用近似方法,Kim等人利用量子退火来解决具有相移键控和正交调幅场景的大型MIMO问题。在这里,我们扩展了他们的工作,并使用D-Wave Advantage系统的Pegasus P16拓扑,提出了更复杂的调制和更高的接收器/发射器数量的嵌入限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infocommunications Journal
Infocommunications Journal TELECOMMUNICATIONS-
CiteScore
1.90
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信