COVARIANCE KERNEL OF LINEAR SPECTRAL STATISTICS FOR HALF-HEAVY TAILED WIGNER MATRICES

Pub Date : 2020-10-08 DOI:10.1142/s201032632250054x
A. Lodhia, A. Maltsev
{"title":"COVARIANCE KERNEL OF LINEAR SPECTRAL STATISTICS FOR HALF-HEAVY TAILED WIGNER MATRICES","authors":"A. Lodhia, A. Maltsev","doi":"10.1142/s201032632250054x","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the covariance kernel of the Gaussian process that arises as the limit of fluctuations of linear spectral statistics for Wigner matrices with a few moments. More precisely, the process we study here corresponds to Hermitian matrices with independent entries that have $\\alpha$ moments for $2<\\alpha < 4$. We obtain a closed form $\\alpha$-dependent expression for the covariance of the limiting process resulting from fluctuations of the Stieltjes transform by explicitly integrating the known double Laplace transform integral formula obtained in the literature. We then express the covariance as an integral kernel acting on bounded continuous test functions. The resulting formulation allows us to offer a heuristic interpretation of the impact the typical large eigenvalues of this matrix ensemble have on the covariance structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s201032632250054x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we analyze the covariance kernel of the Gaussian process that arises as the limit of fluctuations of linear spectral statistics for Wigner matrices with a few moments. More precisely, the process we study here corresponds to Hermitian matrices with independent entries that have $\alpha$ moments for $2<\alpha < 4$. We obtain a closed form $\alpha$-dependent expression for the covariance of the limiting process resulting from fluctuations of the Stieltjes transform by explicitly integrating the known double Laplace transform integral formula obtained in the literature. We then express the covariance as an integral kernel acting on bounded continuous test functions. The resulting formulation allows us to offer a heuristic interpretation of the impact the typical large eigenvalues of this matrix ensemble have on the covariance structure.
分享
查看原文
半重尾wigner矩阵线性谱统计量的协方差核
本文分析了作为Wigner矩阵线性谱统计涨落极限的高斯过程的协方差核。更准确地说,我们这里研究的过程对应于具有独立元素的厄米矩阵,这些元素在$2<\ α < 4$时具有$\ α $矩。通过显式地对已知的二重拉普拉斯变换积分公式进行积分,得到了由Stieltjes变换波动引起的极限过程的协方差的封闭形式$\alpha$依赖表达式。然后将协方差表示为作用于有界连续测试函数的积分核。由此产生的公式使我们能够对该矩阵集合的典型大特征值对协方差结构的影响提供启发式解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信