On blowup for the supercritical quadratic wave equation

E. Csobo, Irfan Glogi'c, Birgit Schorkhuber
{"title":"On blowup for the supercritical quadratic wave equation","authors":"E. Csobo, Irfan Glogi'c, Birgit Schorkhuber","doi":"10.5445/IR/1000138775","DOIUrl":null,"url":null,"abstract":"We study singularity formation for the focusing quadratic wave equation in the energy supercritical case, i.e., for $d \\ge 7$. We find in closed form a new, non-trivial, radial, self-similar blowup solution $u^∗$ which exists for all d $d \\ge 7$. For $d = 9$, we study the stability of $u^∗$ without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via $u^*$ . In similarity coordinates, this family represents a co-dimension one Lipschitz manifold modulo translation symmetries. In addition, in $d = 7$ and $d = 9$, we prove non-radial stability of the well-known ODE blowup solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000138775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study singularity formation for the focusing quadratic wave equation in the energy supercritical case, i.e., for $d \ge 7$. We find in closed form a new, non-trivial, radial, self-similar blowup solution $u^∗$ which exists for all d $d \ge 7$. For $d = 9$, we study the stability of $u^∗$ without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via $u^*$ . In similarity coordinates, this family represents a co-dimension one Lipschitz manifold modulo translation symmetries. In addition, in $d = 7$ and $d = 9$, we prove non-radial stability of the well-known ODE blowup solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates.
超临界二次波方程的爆破问题
研究了能量超临界情况下聚焦二次波方程奇点的形成。我们以闭形式发现了一个新的、非平凡的、径向的、自相似的爆破解$u^ * $,它存在于所有的d $d $ g7 $。对于$d = 9$,我们研究了$u^*$的稳定性,在初始数据没有任何对称假设的情况下,证明了存在一组通过$u^*$导致爆炸的扰动。在相似坐标下,这个族表示一个协维的1 Lipschitz流形模平移对称。此外,在$d = 7$和$d = 9$中,我们证明了著名的ODE爆破解的非径向稳定性。同时,我们首次建立了波动方程在相似坐标下的正则性的持久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信