Exploring Vestibulo-Ocular Adaptation in a Closed-Loop Neuro-Robotic Experiment Using STDP. A Simulation Study

Francisco Naveros, J. Garrido, A. Arleo, E. Ros, N. Luque
{"title":"Exploring Vestibulo-Ocular Adaptation in a Closed-Loop Neuro-Robotic Experiment Using STDP. A Simulation Study","authors":"Francisco Naveros, J. Garrido, A. Arleo, E. Ros, N. Luque","doi":"10.1109/IROS.2018.8594019","DOIUrl":null,"url":null,"abstract":"Studying and understanding the computational primitives of our neural system requires for a diverse and complementary set of techniques. In this work, we use the Neuro-robotic Platform (NRP)to evaluate the vestibulo ocular cerebellar adaptatIon (Vestibulo-ocular reflex, VOR)mediated by two STDP mechanisms located at the cerebellar molecular layer and the vestibular nuclei respectively. This simulation study adopts an experimental setup (rotatory VOR)widely used by neuroscientists to better understand the contribution of certain specific cerebellar properties (i.e. distributed STDP, neural properties, coding cerebellar topology, etc.)to r-VOR adaptation. The work proposes and describes an embodiment solution for which we endow a simulated humanoid robot (iCub)with a spiking cerebellar model by means of the NRP, and we face the humanoid to an r-VOR task. The results validate the adaptive capabilities of the spiking cerebellar model (with STDP)in a perception-action closed-loop (r- VOR)causing the simulated iCub robot to mimic a human behavior.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"12 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Studying and understanding the computational primitives of our neural system requires for a diverse and complementary set of techniques. In this work, we use the Neuro-robotic Platform (NRP)to evaluate the vestibulo ocular cerebellar adaptatIon (Vestibulo-ocular reflex, VOR)mediated by two STDP mechanisms located at the cerebellar molecular layer and the vestibular nuclei respectively. This simulation study adopts an experimental setup (rotatory VOR)widely used by neuroscientists to better understand the contribution of certain specific cerebellar properties (i.e. distributed STDP, neural properties, coding cerebellar topology, etc.)to r-VOR adaptation. The work proposes and describes an embodiment solution for which we endow a simulated humanoid robot (iCub)with a spiking cerebellar model by means of the NRP, and we face the humanoid to an r-VOR task. The results validate the adaptive capabilities of the spiking cerebellar model (with STDP)in a perception-action closed-loop (r- VOR)causing the simulated iCub robot to mimic a human behavior.
利用STDP在闭环神经机器人实验中探索前庭-眼适应。模拟研究
研究和理解我们神经系统的计算原语需要一套多样化和互补的技术。在这项工作中,我们使用神经机器人平台(NRP)来评估分别位于小脑分子层和前庭核的两种STDP机制介导的前庭眼小脑适应(vestibulo -ocular reflex, VOR)。本仿真研究采用神经科学家广泛使用的实验设置(旋转VOR),以更好地了解某些特定的小脑特性(如分布式STDP、神经特性、编码小脑拓扑等)对r-VOR适应的贡献。本文提出并描述了一种实施方案,通过NRP赋予仿真人形机器人(iCub)尖峰小脑模型,并使其面对r-VOR任务。结果验证了尖峰小脑模型(带有STDP)在感知-行动闭环(r- VOR)中的自适应能力,使模拟的iCub机器人能够模仿人类的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信