M. I. Mohamed, M. Salah, Y. Coskuner, M. Ibrahim, C. Pieprzica, E. Ozkan
{"title":"Integrated Approach to Evaluate Rock Brittleness and Fracability for Hydraulic Fracturing Optimization in Shale Gas","authors":"M. I. Mohamed, M. Salah, Y. Coskuner, M. Ibrahim, C. Pieprzica, E. Ozkan","doi":"10.2118/195196-MS","DOIUrl":null,"url":null,"abstract":"\n A fracability model integrating the rock elastic properties, fracture toughness and confining pressure is presented in this paper. Tensile and compressive strength tests are conducted to define the rock-strength. Geomechanical rock properties derived from analysis of full-wave sonic logs and core samples are combined to develop models to verify the brittleness and fracability indices. An improved understanding of the brittleness and fracability indices and reservoir mechanical properties is offered and valuable insight into the optimization of completion and hydraulic fracturing design is provided. The process of screening hydraulic fracturing candidates, selecting desirable hydraulic fracturing intervals, and identifying sweet spots within each prospect reservoir are demonstrated.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195196-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A fracability model integrating the rock elastic properties, fracture toughness and confining pressure is presented in this paper. Tensile and compressive strength tests are conducted to define the rock-strength. Geomechanical rock properties derived from analysis of full-wave sonic logs and core samples are combined to develop models to verify the brittleness and fracability indices. An improved understanding of the brittleness and fracability indices and reservoir mechanical properties is offered and valuable insight into the optimization of completion and hydraulic fracturing design is provided. The process of screening hydraulic fracturing candidates, selecting desirable hydraulic fracturing intervals, and identifying sweet spots within each prospect reservoir are demonstrated.