An algorithm for constructing polynomial systems whose solution space characterizes quantum circuits

V. Gerdt, V. Severyanov
{"title":"An algorithm for constructing polynomial systems whose solution space characterizes quantum circuits","authors":"V. Gerdt, V. Severyanov","doi":"10.1117/12.683121","DOIUrl":null,"url":null,"abstract":"An algorithm and its first implementation in C# are presented for assembling arbitrary quantum circuits on the base of Hadamard and Toffoli gates and for constructing multivariate polynomial systems over the finite field Z2 arising when applying the Feynman's sum-over-paths approach to quantum circuits. The matrix elements determined by a circuit can be computed by counting the number of common roots in Z2 for the polynomial system associated with the circuit. To determine the number of solutions in Z2 for the output polynomial system, one can use the Grobner bases method and the relevant algorithms for computing Grobner bases.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2005-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.683121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An algorithm and its first implementation in C# are presented for assembling arbitrary quantum circuits on the base of Hadamard and Toffoli gates and for constructing multivariate polynomial systems over the finite field Z2 arising when applying the Feynman's sum-over-paths approach to quantum circuits. The matrix elements determined by a circuit can be computed by counting the number of common roots in Z2 for the polynomial system associated with the circuit. To determine the number of solutions in Z2 for the output polynomial system, one can use the Grobner bases method and the relevant algorithms for computing Grobner bases.
一种构造多项式系统的算法,其解空间具有量子电路的特征
本文提出了一种基于Hadamard门和Toffoli门的任意量子电路的组装算法和在有限域Z2上构造多元多项式系统的算法,并首次在c#中实现。由电路确定的矩阵元素可以通过计算与电路相关的多项式系统在Z2中的公根数来计算。为了确定输出多项式系统在Z2中的解的个数,可以使用Grobner基方法和计算Grobner基的相关算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信