SnoopyDB: narrowing the gap between structured and unstructured information using recommendations

W. Gassler, Eva Zangerle, Michael Tschuggnall, Günther Specht
{"title":"SnoopyDB: narrowing the gap between structured and unstructured information using recommendations","authors":"W. Gassler, Eva Zangerle, Michael Tschuggnall, Günther Specht","doi":"10.1145/1810617.1810670","DOIUrl":null,"url":null,"abstract":"Knowledge is structured - until it is stored to a wiki-like information system. In this paper we present the multi-user system SnoopyDB, which preserves the structure of knowledge without restricting the type or schema of inserted information. A self-learning schema system and recommendation engine support the user during the process of inserting information. These dynamically calculated recommendations develop an implicit schema, which is used by the majority of stored information. Further recommendation measures enhance the content both semantically and syntactically and motivate the user to insert more information than he intended to.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"44 1","pages":"271-272"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1810617.1810670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Knowledge is structured - until it is stored to a wiki-like information system. In this paper we present the multi-user system SnoopyDB, which preserves the structure of knowledge without restricting the type or schema of inserted information. A self-learning schema system and recommendation engine support the user during the process of inserting information. These dynamically calculated recommendations develop an implicit schema, which is used by the majority of stored information. Further recommendation measures enhance the content both semantically and syntactically and motivate the user to insert more information than he intended to.
SnoopyDB:使用推荐缩小结构化和非结构化信息之间的差距
知识是结构化的——直到它被存储到类似维基百科的信息系统中。在本文中,我们提出了一个多用户系统SnoopyDB,它保留了知识的结构,而不限制插入信息的类型或模式。自学习模式系统和推荐引擎在用户插入信息的过程中提供支持。这些动态计算的建议形成了隐式模式,大多数存储信息都使用这种模式。进一步的推荐措施在语义和语法上都增强了内容,并激励用户插入比预期更多的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信