{"title":"Strategies and first-absorption times in the random walk game","authors":"M. Krivonosov, S. Tikhomirov","doi":"10.18500/0869-6632-003043","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to determine the average time to reach the boundaries, as well as to identify the strategy in the game between two players, controlling point movements on the finite square lattice using an independent choice of strategies. One player wants to survive, i. e., to stay within the interior of the square, as long as possible, while his opponent wants to reach the absorbing boundary. A game starts from the center of the square and every next movement of the point is determined by independent strategy choices made by the players. The value of the game is the survival time that is the number of steps before the absorption happens. In addition we present series of experiments involving both human players and an autonomous agent (bot) and analysis of the survival time probability distributions. Methods. In this work, methods of the theory of absorbing Markov chains were used to analyze strategies and absorption times, as well as the Monte Carlo method to simulate trajectories. Additionally, a large-scale field experiment was conducted using the developed mobile application. Results. The players’ strategies are experimentally obtained for the cases of playing against an autonomous agent (bot), as well as human players against each other. A comparison with optimal strategies and a random walk is made: the difference between the experimental strategies and the optimal ones is shown, however, the resulting strategies show a much better result of games than a simple random walk. In addition, especially long-running games do not show the Markovian property in case of the simulation corresponding strategies. Conclusion. The sampled histograms indicate that the game-driven walks are more complex than a random walk on a finite lattice but it can be reproduced with a Markov Chain model.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of this work is to determine the average time to reach the boundaries, as well as to identify the strategy in the game between two players, controlling point movements on the finite square lattice using an independent choice of strategies. One player wants to survive, i. e., to stay within the interior of the square, as long as possible, while his opponent wants to reach the absorbing boundary. A game starts from the center of the square and every next movement of the point is determined by independent strategy choices made by the players. The value of the game is the survival time that is the number of steps before the absorption happens. In addition we present series of experiments involving both human players and an autonomous agent (bot) and analysis of the survival time probability distributions. Methods. In this work, methods of the theory of absorbing Markov chains were used to analyze strategies and absorption times, as well as the Monte Carlo method to simulate trajectories. Additionally, a large-scale field experiment was conducted using the developed mobile application. Results. The players’ strategies are experimentally obtained for the cases of playing against an autonomous agent (bot), as well as human players against each other. A comparison with optimal strategies and a random walk is made: the difference between the experimental strategies and the optimal ones is shown, however, the resulting strategies show a much better result of games than a simple random walk. In addition, especially long-running games do not show the Markovian property in case of the simulation corresponding strategies. Conclusion. The sampled histograms indicate that the game-driven walks are more complex than a random walk on a finite lattice but it can be reproduced with a Markov Chain model.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.