Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information

Q3 Social Sciences
Fernando Orduna-Cabrera, Marcial Sandoval-Gastelum, I. McCallum, L. See, S. Fritz, Santosh Karanam, T. Sturn, Valeria Javalera-Rincon, F. F. González-Navarro
{"title":"Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information","authors":"Fernando Orduna-Cabrera, Marcial Sandoval-Gastelum, I. McCallum, L. See, S. Fritz, Santosh Karanam, T. Sturn, Valeria Javalera-Rincon, F. F. González-Navarro","doi":"10.3390/geographies3030029","DOIUrl":null,"url":null,"abstract":"The creation of crop type maps from satellite data has proven challenging and is often impeded by a lack of accurate in situ data. Street-level imagery represents a new potential source of in situ data that may aid crop type mapping, but it requires automated algorithms to recognize the features of interest. This paper aims to demonstrate a method for crop type (i.e., maize, wheat and others) recognition from street-level imagery based on a convolutional neural network using a bottom-up approach. We trained the model with a highly accurate dataset of crowdsourced labelled street-level imagery using the Picture Pile application. The classification results achieved an AUC of 0.87 for wheat, 0.85 for maize and 0.73 for others. Given that wheat and maize are two of the most common food crops grown globally, combined with an ever-increasing amount of available street-level imagery, this approach could help address the need for improved global crop type monitoring. Challenges remain in addressing the noise aspect of street-level imagery (i.e., buildings, hedgerows, automobiles, etc.) and uncertainties due to differences in the time of day and location. Such an approach could also be applied to developing other in situ data sets from street-level imagery, e.g., for land use mapping or socioeconomic indicators.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies3030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of crop type maps from satellite data has proven challenging and is often impeded by a lack of accurate in situ data. Street-level imagery represents a new potential source of in situ data that may aid crop type mapping, but it requires automated algorithms to recognize the features of interest. This paper aims to demonstrate a method for crop type (i.e., maize, wheat and others) recognition from street-level imagery based on a convolutional neural network using a bottom-up approach. We trained the model with a highly accurate dataset of crowdsourced labelled street-level imagery using the Picture Pile application. The classification results achieved an AUC of 0.87 for wheat, 0.85 for maize and 0.73 for others. Given that wheat and maize are two of the most common food crops grown globally, combined with an ever-increasing amount of available street-level imagery, this approach could help address the need for improved global crop type monitoring. Challenges remain in addressing the noise aspect of street-level imagery (i.e., buildings, hedgerows, automobiles, etc.) and uncertainties due to differences in the time of day and location. Such an approach could also be applied to developing other in situ data sets from street-level imagery, e.g., for land use mapping or socioeconomic indicators.
调查使用街道级图像和深度学习来产生原位作物类型信息
事实证明,利用卫星数据制作作物类型图具有挑战性,而且往往由于缺乏准确的实地数据而受到阻碍。街道级图像代表了一种新的潜在的原位数据来源,它可能有助于作物类型的绘图,但它需要自动算法来识别感兴趣的特征。本文旨在展示一种基于卷积神经网络的自下而上方法,从街道图像中识别作物类型(即玉米、小麦等)的方法。我们使用图片堆应用程序使用高度精确的众包标记街道图像数据集训练模型。分类结果表明,小麦的AUC为0.87,玉米为0.85,其他为0.73。鉴于小麦和玉米是全球种植最常见的两种粮食作物,再加上可用的街道图像数量不断增加,这种方法可以帮助解决改进全球作物类型监测的需求。在解决街道图像(即建筑物、树篱、汽车等)的噪音方面以及由于一天中的时间和位置的差异而产生的不确定性方面仍然存在挑战。这种方法也可用于从街道一级图像开发其他现场数据集,例如用于土地利用制图或社会经济指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信