Exactly Computing the Tail of the Poisson-Binomial Distribution

N. Peres, Andrew Lee, U. Keich
{"title":"Exactly Computing the Tail of the Poisson-Binomial Distribution","authors":"N. Peres, Andrew Lee, U. Keich","doi":"10.1145/3460774","DOIUrl":null,"url":null,"abstract":"We present ShiftConvolvePoibin, a fast exact method to compute the tail of a Poisson-binomial distribution (PBD). Our method employs an exponential shift to retain its accuracy when computing a tail probability, and in practice we find that it is immune to the significant relative errors that other methods, exact or approximate, can suffer from when computing very small tail probabilities of the PBD. The accompanying R package is also competitive with the fastest implementations for computing the entire PBD.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"179 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present ShiftConvolvePoibin, a fast exact method to compute the tail of a Poisson-binomial distribution (PBD). Our method employs an exponential shift to retain its accuracy when computing a tail probability, and in practice we find that it is immune to the significant relative errors that other methods, exact or approximate, can suffer from when computing very small tail probabilities of the PBD. The accompanying R package is also competitive with the fastest implementations for computing the entire PBD.
精确计算泊松二项分布的尾部
我们提出了ShiftConvolvePoibin,一种快速精确计算泊松二项分布(PBD)尾部的方法。我们的方法在计算尾部概率时采用指数移位来保持其准确性,并且在实践中我们发现,当计算非常小的PBD尾部概率时,其他方法(精确或近似)可能会出现显著的相对误差,而我们的方法可以避免这种相对误差。附带的R包也与计算整个PBD的最快实现相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信