{"title":"Computer-aided diagnosis system for retinal disorder classification using optical coherence tomography images","authors":"N. Saleh, Manal Abdel Wahed, A. M. Salaheldin","doi":"10.1515/bmt-2021-0330","DOIUrl":null,"url":null,"abstract":"Abstract The incidence of vision impairment is rapidly increasing. Diagnosis and classifying retinal abnormalities in ophthalmological applications is a significant challenge. Using Optical Coherence Tomography (OCT), the study aims to develop a computer aided diagnosis system for detecting and classifying retinal disorders. Choroidal neovascularization, diabetic macular edema, drusen, and normal cases are the investigated groups. Both deep learning and machine learning are combined to build the system. The SqueezeNet neural network was modified to extract features. The Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Decision Tree (DT), and Ensemble Model (EM) algorithms were used for disorder classification. The Bayesian optimization technique was also used to determine the best hyperparameters for each model. The model’ performance was evaluated through nine criteria using 12,000 OCT images. The results have demonstrated accuracies of 97.39, 97.47, 96.98, and 95.25% for the SVM, K-NN, DT, and EM, respectively. When results are compared to relevant studies in terms of accuracy and tested samples, they show superior performance. As a result, a novel computer-aided diagnosis system for detecting and classifying retinal diseases has been developed, reducing human error while also saving time.","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"27 1","pages":"283 - 294"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract The incidence of vision impairment is rapidly increasing. Diagnosis and classifying retinal abnormalities in ophthalmological applications is a significant challenge. Using Optical Coherence Tomography (OCT), the study aims to develop a computer aided diagnosis system for detecting and classifying retinal disorders. Choroidal neovascularization, diabetic macular edema, drusen, and normal cases are the investigated groups. Both deep learning and machine learning are combined to build the system. The SqueezeNet neural network was modified to extract features. The Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Decision Tree (DT), and Ensemble Model (EM) algorithms were used for disorder classification. The Bayesian optimization technique was also used to determine the best hyperparameters for each model. The model’ performance was evaluated through nine criteria using 12,000 OCT images. The results have demonstrated accuracies of 97.39, 97.47, 96.98, and 95.25% for the SVM, K-NN, DT, and EM, respectively. When results are compared to relevant studies in terms of accuracy and tested samples, they show superior performance. As a result, a novel computer-aided diagnosis system for detecting and classifying retinal diseases has been developed, reducing human error while also saving time.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.