Explicit presentations of topological categories of gestures

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J. Arias-Valero, E. Lluis-Puebla
{"title":"Explicit presentations of topological categories of gestures","authors":"J. Arias-Valero, E. Lluis-Puebla","doi":"10.1080/17459737.2022.2111612","DOIUrl":null,"url":null,"abstract":"Thanks to Mazzola's notion of gestures on topological categories we can appreciate how the notion of gesture transcends its manifestation as the movement of the body's limbs and takes a more abstract form that blends diagrammatic (discrete gesturality) and bodily aspects (continuous gesturality). These two aspects are strongly related to two main branches of mathematical music theory, namely, a discrete branch and a continuous branch. The discrete branch corresponds to the diagrams of transformational theory, that is, to networks in musical analysis. The continuous branch corresponds to the movement of the musical performer's body. Informally, a gesture on a topological category is a diagram of continuous paths of morphisms in the category. This definition amounts to that of topological category of gestures, whose structure we study in this article. Specifically, we study the presentation of topological categories of gestures as suitable categories of topological functors and as suitable categories of sequences, and the explicit presentation of morphisms of a typical topological category of gestures. In particular, we present an exhaustive study, not included in previous publications, of the topological category of continuous paths of an arbitrary digraph. This article can be regarded as a continuation of a previous publication, in a previous issue of this journal, on the presentation of spaces of gestures as function spaces. We include an application of the theory to the variations in Mozart's Piano Sonata K. 331. We provide an Online Supplement, in which we include some technical passages.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"27 1","pages":"213 - 243"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2022.2111612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to Mazzola's notion of gestures on topological categories we can appreciate how the notion of gesture transcends its manifestation as the movement of the body's limbs and takes a more abstract form that blends diagrammatic (discrete gesturality) and bodily aspects (continuous gesturality). These two aspects are strongly related to two main branches of mathematical music theory, namely, a discrete branch and a continuous branch. The discrete branch corresponds to the diagrams of transformational theory, that is, to networks in musical analysis. The continuous branch corresponds to the movement of the musical performer's body. Informally, a gesture on a topological category is a diagram of continuous paths of morphisms in the category. This definition amounts to that of topological category of gestures, whose structure we study in this article. Specifically, we study the presentation of topological categories of gestures as suitable categories of topological functors and as suitable categories of sequences, and the explicit presentation of morphisms of a typical topological category of gestures. In particular, we present an exhaustive study, not included in previous publications, of the topological category of continuous paths of an arbitrary digraph. This article can be regarded as a continuation of a previous publication, in a previous issue of this journal, on the presentation of spaces of gestures as function spaces. We include an application of the theory to the variations in Mozart's Piano Sonata K. 331. We provide an Online Supplement, in which we include some technical passages.
手势拓扑类别的显式呈现
由于Mazzola在拓扑范畴上的手势概念,我们可以欣赏到手势的概念如何超越其作为身体肢体运动的表现形式,并采取一种更抽象的形式,混合了图解(离散手势)和身体方面(连续手势)。这两个方面与数学音乐理论的两个主要分支密切相关,即离散分支和连续分支。离散分支对应于转换理论的图表,即音乐分析中的网络。连续的分支与音乐表演者身体的运动相对应。非正式地说,拓扑范畴上的姿态是范畴中态射连续路径的图。这一定义相当于手势拓扑范畴的定义,本文对其结构进行了研究。具体来说,我们研究了手势拓扑范畴作为拓扑函子的合适范畴和作为序列的合适范畴的表示,以及典型手势拓扑范畴的态射的显式表示。特别地,我们提出了一个详尽的研究,没有包括在以前的出版物,一个任意有向图的连续路径的拓扑范畴。这篇文章可以看作是本杂志上一期关于手势空间作为功能空间表示的文章的延续。我们将这一理论应用于莫扎特钢琴奏鸣曲K. 331的变奏曲。我们提供了一份在线增刊,其中包括一些技术段落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信