M. Hasegawa, Toshinobu Sasaki, K. Sadakane, M. Tabuchi, Y. Takeda, M. Kimura, Y. Fujii
{"title":"Studies for the emetic mechanisms of ipecac syrup (TJN-119) and its active components in ferrets: involvement of 5-hydroxytryptamine receptors.","authors":"M. Hasegawa, Toshinobu Sasaki, K. Sadakane, M. Tabuchi, Y. Takeda, M. Kimura, Y. Fujii","doi":"10.1254/JJP.89.113","DOIUrl":null,"url":null,"abstract":"Ipecac syrup, prepared from a galentical ipecac, contains the nauseant alkaloids cephaeline and emetine. The involvement of receptors and serotonin- and dopamine-metabolizing enzymes in the emesis induced by ipecac syrup and these components was investigated. 1) In ferrets, the selective 5-HT3-receptor antagonist ondansetron (0.5 mg/kg, p.o.) prevented each emesis induced by TJN-119 (0.5 mL/kg, p.o.), cephaeline (0.5 mg/kg, p.o.) and emetine (5.0 mg/kg, p.o.), but the intraperitoneal administration of the selective dopamine D2-receptor antagonist sulpiride failed to significantly suppress the TJN-119, cephaeline and emetine-induced emesis at a dose of 0.1 mg/kg that blocked apomorphine-induced emesis. 2) In the receptor binding assays, cephaeline and emetine had a distinct affinity to 5-HT4 receptor, but no or weak affinity to 5-HT1A, 5-HT3, nicotine, M3, beta1, NK1, and D2 receptors. 3) Cephaeline and emetine did not affect activities of metabolic enzymes of 5-HT and dopamine (MAO-A, MAO-B, tryptophan 5-hydroxylase and tyrosine hydroxylase) in vitro. These results suggest that 5-HT3 receptor plays an important role in the emetic action of TJN-119, cephaeline and emetine, and the 5-HT4 receptor may be involved in their mechanisms.","PeriodicalId":14750,"journal":{"name":"Japanese journal of pharmacology","volume":"81 1","pages":"113-9"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese journal of pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/JJP.89.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Ipecac syrup, prepared from a galentical ipecac, contains the nauseant alkaloids cephaeline and emetine. The involvement of receptors and serotonin- and dopamine-metabolizing enzymes in the emesis induced by ipecac syrup and these components was investigated. 1) In ferrets, the selective 5-HT3-receptor antagonist ondansetron (0.5 mg/kg, p.o.) prevented each emesis induced by TJN-119 (0.5 mL/kg, p.o.), cephaeline (0.5 mg/kg, p.o.) and emetine (5.0 mg/kg, p.o.), but the intraperitoneal administration of the selective dopamine D2-receptor antagonist sulpiride failed to significantly suppress the TJN-119, cephaeline and emetine-induced emesis at a dose of 0.1 mg/kg that blocked apomorphine-induced emesis. 2) In the receptor binding assays, cephaeline and emetine had a distinct affinity to 5-HT4 receptor, but no or weak affinity to 5-HT1A, 5-HT3, nicotine, M3, beta1, NK1, and D2 receptors. 3) Cephaeline and emetine did not affect activities of metabolic enzymes of 5-HT and dopamine (MAO-A, MAO-B, tryptophan 5-hydroxylase and tyrosine hydroxylase) in vitro. These results suggest that 5-HT3 receptor plays an important role in the emetic action of TJN-119, cephaeline and emetine, and the 5-HT4 receptor may be involved in their mechanisms.