Algorithms for Basis Sparsity Non-negative Matrix Factorization

Dan Zhou, Qiaochan Yu, Jie Wen
{"title":"Algorithms for Basis Sparsity Non-negative Matrix Factorization","authors":"Dan Zhou, Qiaochan Yu, Jie Wen","doi":"10.1109/AUTEEE50969.2020.9315568","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a method called basis sparsity non-negative matrix factorization, for decomposing multivariate matrix into sparse nonnegative components. The algorithm combining the original NMF formulation with sparseness constraint to make the basis matrix reaches to a more sparseness degree, and with local features clearer. By controlling the parameter, we can obtain the results of the basis matrix with different sparseness degree. Experiments have been done on the ORL database and the results show the algorithm has a good sparse ability.","PeriodicalId":6767,"journal":{"name":"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)","volume":"5 4 1","pages":"323-327"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEEE50969.2020.9315568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a method called basis sparsity non-negative matrix factorization, for decomposing multivariate matrix into sparse nonnegative components. The algorithm combining the original NMF formulation with sparseness constraint to make the basis matrix reaches to a more sparseness degree, and with local features clearer. By controlling the parameter, we can obtain the results of the basis matrix with different sparseness degree. Experiments have been done on the ORL database and the results show the algorithm has a good sparse ability.
基稀疏性非负矩阵分解算法
本文提出了一种将多元矩阵分解为稀疏非负分量的方法,称为基稀疏非负矩阵分解。该算法将原始的NMF公式与稀疏性约束相结合,使基矩阵达到更稀疏的程度,并且具有更清晰的局部特征。通过控制参数,可以得到不同稀疏度的基矩阵的结果。在ORL数据库上进行了实验,结果表明该算法具有良好的稀疏能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信