Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yifu Li, Lening Wang, Dongyoon Lee, R. Jin
{"title":"Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart","authors":"Yifu Li, Lening Wang, Dongyoon Lee, R. Jin","doi":"10.1145/3501262","DOIUrl":null,"url":null,"abstract":"Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.
通过定性和定量(QQ)控制图监控雾制造的运行时间指标
雾制造在制造网络中结合了雾和云计算,提供高效的数据分析并支持实时决策。检测异常,包括不平衡的计算工作负载和网络攻击,对于确保可靠和响应的计算服务至关重要。然而,这种异常通常与动态卸载事件同时发生,其中计算任务从占用率较高的Fog节点迁移到占用率较低的Fog节点,以减少总体计算时间延迟并提高吞吐量。这种并发性共同影响系统行为,导致异常检测不准确。我们提出了一个定性和定量(QQ)控制图,通过识别在动态卸载(定性变量)存在下被监控的运行时度量关系(定量变量)的变化,使用风险调整监测框架来监测系统异常。仿真和制造雾的实例研究表明,在动态卸载影响下,与现有文献相比,所提出的方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信