Multilinear transference of Fourier and Schur multipliers acting on noncommutative $L_p$ -spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Caspers, Amudhan Krishnaswamy-Usha, G. Vos
{"title":"Multilinear transference of Fourier and Schur multipliers acting on noncommutative \n$L_p$\n -spaces","authors":"M. Caspers, Amudhan Krishnaswamy-Usha, G. Vos","doi":"10.4153/S0008414X2200058X","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a locally compact unimodular group, and let \n$\\phi $\n be some function of n variables on G. To such a \n$\\phi $\n , one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative \n$L_p$\n -spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes \n$S_p(L_2(G))$\n . We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called “multiplicatively bounded \n$(p_1,\\ldots ,p_n)$\n -norm” of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map \n$L_{p_1}(\\mathbb {R}, S_{p_1}) \\times L_{p_2}(\\mathbb {R}, S_{p_2}) \\rightarrow L_{1}(\\mathbb {R}, S_{1})$\n , whenever \n$p_1$\n and \n$p_2$\n are such that \n$\\frac {1}{p_1} + \\frac {1}{p_2} = 1$\n . A similar result holds for certain Calderón–Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X2200058X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let G be a locally compact unimodular group, and let $\phi $ be some function of n variables on G. To such a $\phi $ , one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative $L_p$ -spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes $S_p(L_2(G))$ . We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called “multiplicatively bounded $(p_1,\ldots ,p_n)$ -norm” of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map $L_{p_1}(\mathbb {R}, S_{p_1}) \times L_{p_2}(\mathbb {R}, S_{p_2}) \rightarrow L_{1}(\mathbb {R}, S_{1})$ , whenever $p_1$ and $p_2$ are such that $\frac {1}{p_1} + \frac {1}{p_2} = 1$ . A similar result holds for certain Calderón–Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.
作用于非交换L_p -空间的傅里叶和舒尔乘法器的多线性迁移
摘要设G是一个局部紧幺模群,$\phi $是G上n个变量的函数,对于这样一个$\phi $,我们可以关联一个多重线性傅里叶乘子,它作用于群von Neumann代数的非交换$L_p$ -空间的n倍积。我们也可以定义一个相关的Schur乘子,它作用于Schatten类的n倍乘积$S_p(L_2(G))$。我们将众所周知的迁移结果从线性情况推广到多线性情况。特别地,我们证明了所谓的多线性舒尔乘法器的“乘界$(p_1,\ldots ,p_n)$ -范数”在上面由相应的傅立叶乘法器的乘界范数有界,在群允许的情况下相等。进一步,我们证明了双线性Hilbert变换不被限定为一个向量值映射$L_{p_1}(\mathbb {R}, S_{p_1}) \times L_{p_2}(\mathbb {R}, S_{p_2}) \rightarrow L_{1}(\mathbb {R}, S_{1})$,当$p_1$和$p_2$满足$\frac {1}{p_1} + \frac {1}{p_2} = 1$。对于某些Calderón-Zygmund-type操作符也有类似的结果。这与非向量值欧几里得情况相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信