Simulation of Online Human Arm Inertia Estimation for Robot-aided Rehabilitation

P. A. Diluka Harischandra, A. M. Harsha S. Abeykoon, S. Abeykoon
{"title":"Simulation of Online Human Arm Inertia Estimation for Robot-aided Rehabilitation","authors":"P. A. Diluka Harischandra, A. M. Harsha S. Abeykoon, S. Abeykoon","doi":"10.1109/MERCON.2018.8421998","DOIUrl":null,"url":null,"abstract":"Most of the studies on rehabilitation robots consider the human arm inertia and the gravity torque as system disturbances. Individual anthropometry varies from patient to patient, and therefore human limbs are not modelled. Some studies used the Disturbance Observer (DOB) as a method of disturbance rejection. However, if the inertia and gravity torque parameters of the human arm could be estimated, they could be effectively used in the controller loop to achieve precise motion control. This paper proposes a novel Reaction Torque Observer (RTOB) based estimation technique which updates parameters using learning and recursive algorithms in real-time. The proposed method is applicable to many robot systems where the load inertia or the load is not known. A simulation was carried out with realistic parameters to compare the performance of two competing methods proposed namely, Adaptive Linear Neuron (ADALINE) and Recursive Least Squares (RLS). Results show that the RLS method outperforms the ADALINE method based on the performance criteria of accuracy, precision and convergence speed for estimating the inertia.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"14 1","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the studies on rehabilitation robots consider the human arm inertia and the gravity torque as system disturbances. Individual anthropometry varies from patient to patient, and therefore human limbs are not modelled. Some studies used the Disturbance Observer (DOB) as a method of disturbance rejection. However, if the inertia and gravity torque parameters of the human arm could be estimated, they could be effectively used in the controller loop to achieve precise motion control. This paper proposes a novel Reaction Torque Observer (RTOB) based estimation technique which updates parameters using learning and recursive algorithms in real-time. The proposed method is applicable to many robot systems where the load inertia or the load is not known. A simulation was carried out with realistic parameters to compare the performance of two competing methods proposed namely, Adaptive Linear Neuron (ADALINE) and Recursive Least Squares (RLS). Results show that the RLS method outperforms the ADALINE method based on the performance criteria of accuracy, precision and convergence speed for estimating the inertia.
面向机器人辅助康复的在线人体手臂惯性估计仿真
大多数关于康复机器人的研究都将人臂惯性和重力力矩作为系统扰动。个体人体测量因患者而异,因此人体四肢没有建模。一些研究使用干扰观测器(DOB)作为干扰抑制方法。然而,如果能够估计出人体手臂的惯性和重力力矩参数,则可以有效地将其用于控制器回路中,以实现精确的运动控制。本文提出了一种新的基于反力观测器的估计技术,该技术利用学习和递归算法实时更新参数。该方法适用于许多负载惯性或负载未知的机器人系统。采用真实参数进行仿真,比较了自适应线性神经元(ADALINE)和递归最小二乘(RLS)两种方法的性能。结果表明,基于估计惯性的精度、精度和收敛速度等性能指标,RLS方法优于ADALINE方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信