Gaussian Rank Correlation and Regression

Dante Amengual, Enrique Sentana, Zhanyuan Tian
{"title":"Gaussian Rank Correlation and Regression","authors":"Dante Amengual, Enrique Sentana, Zhanyuan Tian","doi":"10.1108/s0731-90532021000043b012","DOIUrl":null,"url":null,"abstract":"We study the statistical properties of Pearson correlation coefficients of Gaussian ranks, and Gaussian rank regressions -- OLS applied to those ranks. We show that these procedures are fully efficient when the true copula is Gaussian and the margins are non-parametrically estimated, and remain consistent for their population analogues otherwise. We compare them to Spearman and Pearson correlations and their regression counterparts theoretically and in extensive Monte Carlo simulations. Empirical applications to migration and growth across US states, the augmented Solow growth model, and momentum and reversal effects in individual stock returns confirm that Gaussian rank procedures are insensitive to outliers.","PeriodicalId":9906,"journal":{"name":"CEPR: Financial Economics (Topic)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR: Financial Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/s0731-90532021000043b012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the statistical properties of Pearson correlation coefficients of Gaussian ranks, and Gaussian rank regressions -- OLS applied to those ranks. We show that these procedures are fully efficient when the true copula is Gaussian and the margins are non-parametrically estimated, and remain consistent for their population analogues otherwise. We compare them to Spearman and Pearson correlations and their regression counterparts theoretically and in extensive Monte Carlo simulations. Empirical applications to migration and growth across US states, the augmented Solow growth model, and momentum and reversal effects in individual stock returns confirm that Gaussian rank procedures are insensitive to outliers.
高斯秩相关与回归
我们研究了高斯秩的Pearson相关系数的统计性质,以及应用于这些秩的高斯秩回归—OLS。我们表明,当真copula为高斯且边缘是非参数估计时,这些过程是完全有效的,并且对于它们的总体类似物保持一致。我们将它们与Spearman和Pearson相关性及其在理论上和广泛的蒙特卡罗模拟中的回归对应物进行比较。对美国各州的移民和增长、增强型索洛增长模型以及个股收益的动量和逆转效应的实证应用证实,高斯秩过程对异常值不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信