On the discrete Sobolev inequalities

IF 3.8 2区 数学 Q1 MATHEMATICS
Sédrick Kameni Ngwamou, Michael Ndjinga
{"title":"On the discrete Sobolev inequalities","authors":"Sédrick Kameni Ngwamou, Michael Ndjinga","doi":"10.1515/jnma-2023-0086","DOIUrl":null,"url":null,"abstract":"Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $\\mathbb{R}^{d} \\text { for } d \\in \\mathbb{N}^{*}, p \\in[1,+\\infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B V\\left(\\mathbb{R}^{d}\\right) \\text { into } \\mathrm{L}^{\\frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove a discrete version of the famous Sobolev inequalities [1] in R d for d ∈ N ∗ , p ∈ [ 1 , + ∞ [ $\mathbb{R}^{d} \text { for } d \in \mathbb{N}^{*}, p \in[1,+\infty[$ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of B V R d into L d d − 1 $B V\left(\mathbb{R}^{d}\right) \text { into } \mathrm{L}^{\frac{d}{d-1}}$ [1, theorem 9.9],[12, theorem 1.1] by introducing discrete analogs of the directional total variations. In the case p > d (Gagliardo-Nirenberg inequality), we adapt the proof of the continuous case ( [1, theorem 9.9], [9, theorem 4.8]) and use techniques from [3, 5]. In the case p > d (Morrey’s inequality), we simplify and extend the proof of [12, theorem 1.1] to more general meshes.
关于离散Sobolev不等式
摘要本文证明了著名的Sobolev不等式[1]在rd中的离散形式,对于可能具有非凸单元的一般非正交网格,对于d∈N∗,p∈[1,+∞[$\mathbb{R}^{d} \text { for } d \in \mathbb{N}^{*}, p \in[1,+\infty[$。我们通过引入定向总变分的离散类比,密切关注基于bv R d嵌入到ld d−1 $B V\left(\mathbb{R}^{d}\right) \text { into } \mathrm{L}^{\frac{d}{d-1}}$[1,定理9.9],[12,定理1.1]的连续Sobolev不等式的证明。在p b> d (Gagliardo-Nirenberg不等式)的情况下,我们采用连续情况([1,定理9.9],[9,定理4.8])的证明,并使用[3,5]中的技术。在p b> d (Morrey’s不等式)的情况下,我们将[12,定理1.1]的证明简化并推广到更一般的网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信