Laser Spectroscopic Tools for Nano-Biophotonics

A. Sokolov
{"title":"Laser Spectroscopic Tools for Nano-Biophotonics","authors":"A. Sokolov","doi":"10.1142/s2424942422400114","DOIUrl":null,"url":null,"abstract":"Biophotonics is a vibrant interdisciplinary field exploring the interaction between electromagnetic radiation and biological materials such as sub-cellular structures and molecules in living organisms. Biophotonics research leads to applications in agriculture and life sciences and produces tools for medical diagnostics and therapies. Working in this general field, we have recently made advances toward ultrasensitive Raman-spectroscopic probing of viruses. Our approach is based on laser spectroscopy aided by plasmonic nanoantennas, as in tip-enhanced Raman spectroscopy (TERS). An additional enhancement in sensitivity and speed is obtained by employing the femtosecond adaptive spectroscopic technique (FAST) for coherent anti-Stokes Raman scattering (CARS). The combined approach shows promise for non-destructive label-free bioimaging with molecular-level sensitivity and with spatial resolution down to a fraction of a nanometer.","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942422400114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biophotonics is a vibrant interdisciplinary field exploring the interaction between electromagnetic radiation and biological materials such as sub-cellular structures and molecules in living organisms. Biophotonics research leads to applications in agriculture and life sciences and produces tools for medical diagnostics and therapies. Working in this general field, we have recently made advances toward ultrasensitive Raman-spectroscopic probing of viruses. Our approach is based on laser spectroscopy aided by plasmonic nanoantennas, as in tip-enhanced Raman spectroscopy (TERS). An additional enhancement in sensitivity and speed is obtained by employing the femtosecond adaptive spectroscopic technique (FAST) for coherent anti-Stokes Raman scattering (CARS). The combined approach shows promise for non-destructive label-free bioimaging with molecular-level sensitivity and with spatial resolution down to a fraction of a nanometer.
纳米生物光子学的激光光谱工具
生物光子学是一个充满活力的跨学科领域,探索电磁辐射与生物材料之间的相互作用,如生物体内的亚细胞结构和分子。生物光子学的研究导致了农业和生命科学的应用,并为医学诊断和治疗提供了工具。在这一领域,我们最近在病毒的超灵敏拉曼光谱探测方面取得了进展。我们的方法是基于等离子体纳米天线辅助的激光光谱学,如尖端增强拉曼光谱(TERS)。利用飞秒自适应光谱技术(FAST)对相干反斯托克斯拉曼散射(CARS)获得了灵敏度和速度的进一步提高。这种结合的方法显示了具有分子水平灵敏度和空间分辨率低至纳米几分之一的非破坏性无标签生物成像的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信