Understanding Social Influence in Activity Location Choice and Lifestyle Patterns Using Geolocation Data from Social Media

Q1 Computer Science
Samiul Hasan, S. Ukkusuri, Xianyuan Zhan
{"title":"Understanding Social Influence in Activity Location Choice and Lifestyle Patterns Using Geolocation Data from Social Media","authors":"Samiul Hasan, S. Ukkusuri, Xianyuan Zhan","doi":"10.3389/fict.2016.00010","DOIUrl":null,"url":null,"abstract":"Social media check-in services have enabled people to share their activity-related choices providing a new source of human activity and social networks data. Geo-location data from these services offers us information, in new ways, to understand social influence on individual choices. In this paper, we investigate the extent of social influence on individual activity and life-style choices from social media check-in data. We first collect user check-ins and their social network information by linking two social media systems (Twitter and Foursquare) and analyze the structure of the underlying social network. We next infer user check-in and geo life-style patterns using topic models. We analyze the correlation between the social relationships and individual-level patterns. We investigate whether or not two individuals have similar activity choice and geo life-style patterns if they are socially connected. We find that the similarity between two users, in their check-in behavior and life-style patterns, increases with the increase of the friendship probability.","PeriodicalId":37157,"journal":{"name":"Frontiers in ICT","volume":"81 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in ICT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fict.2016.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 28

Abstract

Social media check-in services have enabled people to share their activity-related choices providing a new source of human activity and social networks data. Geo-location data from these services offers us information, in new ways, to understand social influence on individual choices. In this paper, we investigate the extent of social influence on individual activity and life-style choices from social media check-in data. We first collect user check-ins and their social network information by linking two social media systems (Twitter and Foursquare) and analyze the structure of the underlying social network. We next infer user check-in and geo life-style patterns using topic models. We analyze the correlation between the social relationships and individual-level patterns. We investigate whether or not two individuals have similar activity choice and geo life-style patterns if they are socially connected. We find that the similarity between two users, in their check-in behavior and life-style patterns, increases with the increase of the friendship probability.
利用社交媒体的地理位置数据了解活动地点选择和生活方式的社会影响
社交媒体签到服务使人们能够分享他们与活动相关的选择,为人类活动和社交网络数据提供了新的来源。来自这些服务的地理位置数据以新的方式为我们提供信息,以了解社会对个人选择的影响。在本文中,我们从社交媒体签到数据调查社会对个人活动和生活方式选择的影响程度。我们首先通过连接两个社交媒体系统(Twitter和Foursquare)来收集用户签到和他们的社交网络信息,并分析底层社交网络的结构。接下来,我们使用主题模型推断用户签入和地理生活方式模式。我们分析了社会关系与个体层面模式之间的相关性。我们调查是否两个个人有相似的活动选择和地理生活方式模式,如果他们是社会联系。我们发现,两个用户在签到行为和生活方式模式上的相似性随着友谊概率的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in ICT
Frontiers in ICT Computer Science-Computer Networks and Communications
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信