Hopf bifurcation in a partial dependent predator–prey system with multiple delays

Qingsong Liu, Yiping Lin
{"title":"Hopf bifurcation in a partial dependent predator–prey system with multiple delays","authors":"Qingsong Liu, Yiping Lin","doi":"10.1080/21642583.2014.882281","DOIUrl":null,"url":null,"abstract":"In this paper, a partial dependent predator–prey system with multiple delays is investigated. By choosing τ1, τ2 and τ3 as bifurcating parameters, we show that Hopf bifurcations occur. In addition, by using theory of functional differential equation and Hassard's method, explicit algorithms for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"11 1","pages":"107 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.882281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a partial dependent predator–prey system with multiple delays is investigated. By choosing τ1, τ2 and τ3 as bifurcating parameters, we show that Hopf bifurcations occur. In addition, by using theory of functional differential equation and Hassard's method, explicit algorithms for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.
多时滞部分依赖捕食系统的Hopf分岔
研究了一类具有多时滞的部分相关捕食者-食饵系统。通过选择τ1, τ2和τ3作为分岔参数,我们证明了Hopf分岔的存在。此外,利用泛函微分方程理论和Hassard方法,导出了Hopf分岔方向和分岔周期解稳定性的显式算法。最后,进行了数值模拟来支持分析结果,并观察了混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信