A. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. Grachev
{"title":"MAX phase Ti2AlN synthesis by reactive sintering in vacuum","authors":"A. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. Grachev","doi":"10.17073/1997-308x-2022-4-25-33","DOIUrl":null,"url":null,"abstract":"The synthesis of MAX phase Ti2AlN from several mixtures of Ti, Al, TiN, and AlN powders by vacuum sintering of greensamples in the form of dense compacts, bulk powder in silica tubes, and plain layer in a closed rectangular molybdenum boat was studied upon variation in charge composition and sintering temperature Ts. The sintering of 2 : 1 Ti–AlN mixture was carried out at 1100, 1200, 1300, 1400, and 1500 °С with exposure time of 60 min. The largest MAX phase content (94 wt.%) was reached at Ts = 1400 °С. The sintering of 1 : 1 TiAl : TiN composition at the same temperature gave 93 wt.% Ti2AlN. The best result (singlephase Ti2AlN in a 100-% yield) was achieved upon the sintering of 1 : 1 : 1 Ti–Al–TiN composition at Ts = 1400 °С. The scalability of our process was checked by the fabrication of a large (0.5 kg) and uniform cake of single-phase Ti2AlN. In experiments we used green samples with shielded lateral surface (bulk powder in silica tubes, plain layer in a closed molybdenum boat) and without shield (dense compacts). It has been shown that shielding of Ti–Al–TiN samples restricts the escape of Al vapor from a sintered mixture, thus providing more favorable conditions for the synthesis of single-phase Ti2AlN. Our process can be readily recommended for practical implementation.","PeriodicalId":14693,"journal":{"name":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2022-4-25-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of MAX phase Ti2AlN from several mixtures of Ti, Al, TiN, and AlN powders by vacuum sintering of greensamples in the form of dense compacts, bulk powder in silica tubes, and plain layer in a closed rectangular molybdenum boat was studied upon variation in charge composition and sintering temperature Ts. The sintering of 2 : 1 Ti–AlN mixture was carried out at 1100, 1200, 1300, 1400, and 1500 °С with exposure time of 60 min. The largest MAX phase content (94 wt.%) was reached at Ts = 1400 °С. The sintering of 1 : 1 TiAl : TiN composition at the same temperature gave 93 wt.% Ti2AlN. The best result (singlephase Ti2AlN in a 100-% yield) was achieved upon the sintering of 1 : 1 : 1 Ti–Al–TiN composition at Ts = 1400 °С. The scalability of our process was checked by the fabrication of a large (0.5 kg) and uniform cake of single-phase Ti2AlN. In experiments we used green samples with shielded lateral surface (bulk powder in silica tubes, plain layer in a closed molybdenum boat) and without shield (dense compacts). It has been shown that shielding of Ti–Al–TiN samples restricts the escape of Al vapor from a sintered mixture, thus providing more favorable conditions for the synthesis of single-phase Ti2AlN. Our process can be readily recommended for practical implementation.