Message complexity of population protocols

Talley Amir, J. Aspnes, David Doty, H. MahsaEftekhari, Eric E. Severson
{"title":"Message complexity of population protocols","authors":"Talley Amir, J. Aspnes, David Doty, H. MahsaEftekhari, Eric E. Severson","doi":"10.4230/LIPIcs.DISC.2020.6","DOIUrl":null,"url":null,"abstract":"The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of the $\\textit{message complexity}$ for population protocols, where the state of an agent is divided into an externally-visible $\\textit{message}$ and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of $O(1)$ message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes a semilinear predicate (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $O(n \\log s(n))$-space-bounded Turing machine. We then consider time complexity, introducing novel $O(\\mathrm{polylog}(n))$ expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only one-bit messages.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"1 1","pages":"6:1-6:18"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2020.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of the $\textit{message complexity}$ for population protocols, where the state of an agent is divided into an externally-visible $\textit{message}$ and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of $O(1)$ message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes a semilinear predicate (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $O(n \log s(n))$-space-bounded Turing machine. We then consider time complexity, introducing novel $O(\mathrm{polylog}(n))$ expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only one-bit messages.
人口协议的消息复杂度
标准种群协议模型假设当两个代理交互时,每个代理都观察另一个代理的整个状态。我们开始研究人口协议的$\textit{message complexity}$,其中代理的状态分为外部可见的$\textit{message}$和内部组件,其中交互中的其他代理只能观察到消息。我们考虑$O(1)$消息复杂性的情况。当时间不受限制时,我们根据内部状态的数量获得稳定可计算谓词的精确表征$s(n)$:如果$s(n) = o(n)$,则协议计算一个半线性谓词(不像原始模型,它可以使用$s(n) = O(\log n)$计算非半线性谓词),否则它计算一个由不确定性$O(n \log s(n))$ -空间有界图灵机可决定的谓词。然后,我们考虑了时间复杂性,引入了新的$O(\mathrm{polylog}(n))$预期时间协议,用于军政府/领导人选举和通用广播的高概率正确性,以及概率为1的近似和精确人口规模计数的正确性。最后,我们证明了有界消息大小协议的能力的主要约束是内部状态的大小:对于无界的内部状态,任何可计算函数都可以在仅使用一位消息的协议的极限内以概率1计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信