PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems

Yongmin Tan, H. Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani, D. Rajan
{"title":"PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems","authors":"Yongmin Tan, H. Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani, D. Rajan","doi":"10.1109/ICDCS.2012.65","DOIUrl":null,"url":null,"abstract":"Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.","PeriodicalId":6300,"journal":{"name":"2012 IEEE 32nd International Conference on Distributed Computing Systems","volume":"3 1","pages":"285-294"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 32nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2012.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.
PREPARE:虚拟化云系统的预测性性能异常预防
由于资源争夺、软件bug、硬件故障等原因,虚拟化云系统容易出现性能异常。在本文中,我们提出了一种新的预测性能异常预防(PREPARE)系统,为虚拟化云计算基础设施提供自动性能异常预防。PREPARE集成了在线异常预测、基于学习的原因推理和预测预防驱动,在没有人为干预的情况下最大限度地减少性能异常的损失。我们在Xen平台上实现了PREPARE,并在NCSU的虚拟计算实验室使用商业数据流处理系统(IBM system S)和在线拍卖基准(RUBiS)对其进行了测试。实验结果表明,PREPARE可以有效地防止性能异常,同时对云基础设施的开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信