Finding Structurally and Temporally Similar Trajectories in Graphs

R. Grossi, Andrea Marino, Shima Moghtasedi
{"title":"Finding Structurally and Temporally Similar Trajectories in Graphs","authors":"R. Grossi, Andrea Marino, Shima Moghtasedi","doi":"10.4230/LIPIcs.SEA.2020.24","DOIUrl":null,"url":null,"abstract":"The analysis of similar motions in a network provides useful information for different applications like route recommendation. We are interested in algorithms to efficiently retrieve trajectories that are similar to a given query trajectory. For this task many studies have focused on extracting the geometrical information of trajectories. In this paper we investigate the properties of trajectories moving along the paths of a network. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose an approximation technique that offers the top-k similar trajectories with respect to a query trajectory in an efficient way with acceptable precision. We investigate our method over real-world networks, and our experimental results show the effectiveness of the proposed method.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"73 1","pages":"24:1-24:13"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2020.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The analysis of similar motions in a network provides useful information for different applications like route recommendation. We are interested in algorithms to efficiently retrieve trajectories that are similar to a given query trajectory. For this task many studies have focused on extracting the geometrical information of trajectories. In this paper we investigate the properties of trajectories moving along the paths of a network. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose an approximation technique that offers the top-k similar trajectories with respect to a query trajectory in an efficient way with acceptable precision. We investigate our method over real-world networks, and our experimental results show the effectiveness of the proposed method.
在图中寻找结构和时间上相似的轨迹
对网络中相似运动的分析为不同的应用提供了有用的信息,比如路由推荐。我们对有效检索与给定查询轨迹相似的轨迹的算法感兴趣。为了完成这个任务,许多研究都集中在提取轨迹的几何信息上。本文研究了沿网络路径运动轨迹的性质。我们通过利用轨迹的时间方面和底层网络的结构提供了一个相似函数。我们提出了一种近似技术,以一种有效的方式以可接受的精度提供关于查询轨迹的top-k相似轨迹。我们在真实的网络中对我们的方法进行了研究,实验结果表明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信