On tensor fractions and tensor products in the category of stereotype spaces

S. Akbarov
{"title":"On tensor fractions and tensor products in the category of stereotype spaces","authors":"S. Akbarov","doi":"10.1070/SM9508","DOIUrl":null,"url":null,"abstract":"We prove two identities that connect some natural tensor products in the category $\\sf{LCS}$ of locally convex spaces with the tensor products in the category $\\sf{Ste}$ of stereotype spaces. In particular, we give sufficient conditions under which the identity $$ X^\\vartriangle\\odot Y^\\vartriangle\\cong (X^\\vartriangle\\cdot Y^\\vartriangle)^\\vartriangle\\cong (X\\cdot Y)^\\vartriangle $$ holds, where $\\odot$ is the injective tensor product in the category $\\sf{Ste}$, $\\cdot$, the primary tensor product in the category $\\sf{LCS}$, and $\\vartriangle$, the pseudosaturation operation in the category $\\sf{LCS}$. Studying the relations of this type is justified by the fact that they turn out to be important instruments for constructing duality theory based on the notion of envelope. In particular, they are used in the construction of the duality theory for the class of (not necessarily, Abelian) countable discrete groups.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM9508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove two identities that connect some natural tensor products in the category $\sf{LCS}$ of locally convex spaces with the tensor products in the category $\sf{Ste}$ of stereotype spaces. In particular, we give sufficient conditions under which the identity $$ X^\vartriangle\odot Y^\vartriangle\cong (X^\vartriangle\cdot Y^\vartriangle)^\vartriangle\cong (X\cdot Y)^\vartriangle $$ holds, where $\odot$ is the injective tensor product in the category $\sf{Ste}$, $\cdot$, the primary tensor product in the category $\sf{LCS}$, and $\vartriangle$, the pseudosaturation operation in the category $\sf{LCS}$. Studying the relations of this type is justified by the fact that they turn out to be important instruments for constructing duality theory based on the notion of envelope. In particular, they are used in the construction of the duality theory for the class of (not necessarily, Abelian) countable discrete groups.
关于原型空间范畴中的张量分数和张量积
证明了将局部凸空间的$\sf{LCS}$范畴内的一些自然张量积与原型空间的$\sf{Ste}$范畴内的张量积联系起来的两个恒等式。特别地,我们给出了恒等式$$ X^\vartriangle\odot Y^\vartriangle\cong (X^\vartriangle\cdot Y^\vartriangle)^\vartriangle\cong (X\cdot Y)^\vartriangle $$成立的充分条件,其中$\odot$是范畴$\sf{Ste}$中的内射张量积,$\cdot$,是范畴$\sf{LCS}$中的主张量积,$\vartriangle$是范畴$\sf{LCS}$中的伪饱和运算。研究这种类型的关系是合理的,因为它们是构建基于包络概念的对偶理论的重要工具。特别地,它们被用于构造一类(不一定是阿贝尔)可数离散群的对偶理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信