Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals

IF 1 Q1 MATHEMATICS
M. Omaba
{"title":"Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals","authors":"M. Omaba","doi":"10.15330/cmp.14.2.475-484","DOIUrl":null,"url":null,"abstract":"A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator, for a positive convex stochastic process, are established. Other known results are easily deduced as particular cases of these inequalities. The obtained results also hold for any convex function.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.475-484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator, for a positive convex stochastic process, are established. Other known results are easily deduced as particular cases of these inequalities. The obtained results also hold for any convex function.
基于新Katugampola广义分数积分的Hermite-Hadamard型广义分数不等式
提出了用Mittag-Leffler函数对Katugampola广义分数积分的一种新的推广。因此,对于一个正凸随机过程,利用新提出的分数积分算子,建立了Hermite-Hadamard不等式的新推广。其他已知的结果很容易推断为这些不等式的特殊情况。所得结果也适用于任何凸函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信