Asset Allocation via Machine Learning

Zhenning Hong, Ruyan Tian, Qing Yang, Wei Yao, Tingting Ye, Liangliang Zhang
{"title":"Asset Allocation via Machine Learning","authors":"Zhenning Hong, Ruyan Tian, Qing Yang, Wei Yao, Tingting Ye, Liangliang Zhang","doi":"10.5430/afr.v10n4p34","DOIUrl":null,"url":null,"abstract":"In this paper, we document a novel machine learning-based numerical framework to solve static and dynamic portfolio optimization problems, with, potentially, an extremely large number of assets. The framework proposed applies to general constrained optimization problems and overcomes many major difficulties arising in current literature. We not only empirically test our methods in U.S. and China A-share equity markets, but also run a horse-race comparison of some optimization schemes documented in (Homescu, 2014). We record significant excess returns, relative to the selected benchmarks, in both U.S. and China equity markets using popular schemes solved by our framework, where the conditional expected returns are obtained via machine learning regression, inspired by (Gu, Kelly & Xiu, 2020) and (Leippold, Wang & Zhou, 2021), of future returns on pricing factors carefully chosen.","PeriodicalId":34570,"journal":{"name":"Journal of Islamic Accounting and Finance Research","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Islamic Accounting and Finance Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5430/afr.v10n4p34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we document a novel machine learning-based numerical framework to solve static and dynamic portfolio optimization problems, with, potentially, an extremely large number of assets. The framework proposed applies to general constrained optimization problems and overcomes many major difficulties arising in current literature. We not only empirically test our methods in U.S. and China A-share equity markets, but also run a horse-race comparison of some optimization schemes documented in (Homescu, 2014). We record significant excess returns, relative to the selected benchmarks, in both U.S. and China equity markets using popular schemes solved by our framework, where the conditional expected returns are obtained via machine learning regression, inspired by (Gu, Kelly & Xiu, 2020) and (Leippold, Wang & Zhou, 2021), of future returns on pricing factors carefully chosen.
通过机器学习进行资产配置
在本文中,我们记录了一个新的基于机器学习的数值框架,用于解决静态和动态投资组合优化问题,潜在地,具有极大量的资产。提出的框架适用于一般约束优化问题,克服了当前文献中出现的许多主要困难。我们不仅在美国和中国a股股票市场对我们的方法进行了实证检验,而且还对(Homescu, 2014)中记录的一些优化方案进行了赛马比较。我们使用由我们的框架解决的流行方案,在美国和中国股市中记录了相对于所选基准的显著超额回报,其中有条件预期回报是通过机器学习回归获得的,灵感来自(Gu, Kelly & Xiu, 2020)和(Leippold, Wang & Zhou, 2021),对精心选择的定价因素的未来回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信