Ma Yingxian, Ma Leyao, Jianchun Guo, J. Lai, Han Zhou, Jia Li
{"title":"A High Temperature and Salt Resistance Supramolecular Thickening System","authors":"Ma Yingxian, Ma Leyao, Jianchun Guo, J. Lai, Han Zhou, Jia Li","doi":"10.2118/193549-MS","DOIUrl":null,"url":null,"abstract":"\n We prepared physically linked allyl alcohol polymer/polyacrylamide double network hydrogels via one-pot strategy. These double network supermolecular fracturing fluids were found to have a better viscosity at high temperature compared to the conventional polyacrylamide systems. After testing with a rheometer, the fluid viscosity could stay 320 mPa s at 150 °C under 170/s shear rate. With NMR and FT-IR results' help, we determined that abundant polar groups of chains were still free, which could complex ions to keep, even enhance the chain stability. Thus, these double network systems showed excellent salt resistance with the non-covalent interactions and physical entanglements, and the viscosity of the allyl alcohol polymer/polyacrylamide system did not drop but increase. The viscosity in high salinity could increase nearly 40 % compared with the initial situation. Overall, the novel fracturing fluid system could maintain a high viscosity and better rheological properties under high salinity and showed excellent high-temperature stability, to make up the lack of fracturing fluid at this stage. It is expected to potential fluid issues caused by low water quality and harsh downhole temperatures were resolved or mitigated.","PeriodicalId":10983,"journal":{"name":"Day 1 Mon, April 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193549-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We prepared physically linked allyl alcohol polymer/polyacrylamide double network hydrogels via one-pot strategy. These double network supermolecular fracturing fluids were found to have a better viscosity at high temperature compared to the conventional polyacrylamide systems. After testing with a rheometer, the fluid viscosity could stay 320 mPa s at 150 °C under 170/s shear rate. With NMR and FT-IR results' help, we determined that abundant polar groups of chains were still free, which could complex ions to keep, even enhance the chain stability. Thus, these double network systems showed excellent salt resistance with the non-covalent interactions and physical entanglements, and the viscosity of the allyl alcohol polymer/polyacrylamide system did not drop but increase. The viscosity in high salinity could increase nearly 40 % compared with the initial situation. Overall, the novel fracturing fluid system could maintain a high viscosity and better rheological properties under high salinity and showed excellent high-temperature stability, to make up the lack of fracturing fluid at this stage. It is expected to potential fluid issues caused by low water quality and harsh downhole temperatures were resolved or mitigated.