F. Gobet, P. Barberet, L. Courtois, G. Devès, J. Gardelle, S. Leblanc, L. Plawinski, H. Seznec
{"title":"X-ray photons produced from a plasma-cathode electron beam for radiation biology applications","authors":"F. Gobet, P. Barberet, L. Courtois, G. Devès, J. Gardelle, S. Leblanc, L. Plawinski, H. Seznec","doi":"10.1063/5.0036284","DOIUrl":null,"url":null,"abstract":"A compact low-energy and high-intensity X-ray source for radiation biology applications is presented. A laser-induced plasma moves inside a 30 kV diode and produces a beam of 10$^{14}$ electrons at the anode location. An aluminum foil converts a part of the energy of these electrons into X-ray photons which are characterized using filtered imaging plates. The dose that would be deposited by these X-ray photons in C. elegans larvae is calculated from Geant4 simulations. It can be set to a value ranging between 10 $\\mu$Gy and 10 mGy per laser shot by simply changing the aluminum foil thickness and the diode voltage. Therefore, this versatile and compact X-ray source opens a new path to explore the radiation effects induced by dose rates varying over several orders of magnitude.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0036284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A compact low-energy and high-intensity X-ray source for radiation biology applications is presented. A laser-induced plasma moves inside a 30 kV diode and produces a beam of 10$^{14}$ electrons at the anode location. An aluminum foil converts a part of the energy of these electrons into X-ray photons which are characterized using filtered imaging plates. The dose that would be deposited by these X-ray photons in C. elegans larvae is calculated from Geant4 simulations. It can be set to a value ranging between 10 $\mu$Gy and 10 mGy per laser shot by simply changing the aluminum foil thickness and the diode voltage. Therefore, this versatile and compact X-ray source opens a new path to explore the radiation effects induced by dose rates varying over several orders of magnitude.