{"title":"Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory","authors":"B. Uzun, M. Yaylı","doi":"10.1177/03093247231164261","DOIUrl":null,"url":null,"abstract":"A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231164261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.