On approximations to minimum link visibility paths in simple polygons

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Mohammad Reza Zarrabi, N. M. Charkari
{"title":"On approximations to minimum link visibility paths in simple polygons","authors":"Mohammad Reza Zarrabi, N. M. Charkari","doi":"10.1080/23799927.2020.1831612","DOIUrl":null,"url":null,"abstract":"We investigate a practical variant of the well-known polygonal visibility path (watchman) problem. For a polygon P, a minimum link visibility path is a polygonal visibility path in P that has the minimum number of links. The problem of finding a minimum link visibility path is NP-hard for simple polygons. If the link-length (number of links) of a minimum link visibility path (tour) is Opt for a simple polygon P with n vertices, we provide an algorithm with runtime that produces polygonal visibility paths (or tours) of link-length at most (or ), where k is a parameter dependent on P, is an output sensitive parameter and γ is the approximation factor of an time approximation algorithm for the geometric travelling salesman problem (path or tour version).","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1831612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate a practical variant of the well-known polygonal visibility path (watchman) problem. For a polygon P, a minimum link visibility path is a polygonal visibility path in P that has the minimum number of links. The problem of finding a minimum link visibility path is NP-hard for simple polygons. If the link-length (number of links) of a minimum link visibility path (tour) is Opt for a simple polygon P with n vertices, we provide an algorithm with runtime that produces polygonal visibility paths (or tours) of link-length at most (or ), where k is a parameter dependent on P, is an output sensitive parameter and γ is the approximation factor of an time approximation algorithm for the geometric travelling salesman problem (path or tour version).
关于简单多边形中最小链接可见性路径的近似
我们研究了众所周知的多边形可见路径(守望者)问题的一个实际变体。对于多边形P,最小链接可见性路径是P中具有最少链接数的多边形可见性路径。寻找最小链接可见性路径的问题对于简单多边形来说是np困难的。如果最小链接可见性路径(巡回)的链接长度(链接数)是一个具有n个顶点的简单多边形P的选择,我们提供了一个运行时算法,该算法产生链接长度最多(或)的多边形可见性路径(或巡回),其中k是依赖于P的参数,是输出敏感参数,γ是几何旅行推销员问题(路径或巡回版本)的时间近似算法的近似因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信