Examinations on the Performance of Classification Models for Thai News Articles

Arisara Noppakaow, O. Uchida
{"title":"Examinations on the Performance of Classification Models for Thai News Articles","authors":"Arisara Noppakaow, O. Uchida","doi":"10.1109/ICITEED.2019.8929959","DOIUrl":null,"url":null,"abstract":"This research aims to examine automatic models to classify Thai online news articles. The data set is six thousands of news articles from three mainstream websites. The news articles are classified into four categories—crime news, politic news, sport news, and entertainment news. Examinations on the classification algorithms of Decision Tree, Support Vector Machine (SVM), and Deep Learning are conducted. The performance is measured by the accuracy, the recall, the precision, and the F-Measure. The results show that the accuracies of Decision Tree, SVM, and Deep Learning models are 86%, 94%, and 95%, respectively.","PeriodicalId":6598,"journal":{"name":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"229 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2019.8929959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research aims to examine automatic models to classify Thai online news articles. The data set is six thousands of news articles from three mainstream websites. The news articles are classified into four categories—crime news, politic news, sport news, and entertainment news. Examinations on the classification algorithms of Decision Tree, Support Vector Machine (SVM), and Deep Learning are conducted. The performance is measured by the accuracy, the recall, the precision, and the F-Measure. The results show that the accuracies of Decision Tree, SVM, and Deep Learning models are 86%, 94%, and 95%, respectively.
泰国新闻文章分类模型的性能检验
本研究旨在检验自动模型对泰国在线新闻文章进行分类。该数据集是来自三个主流网站的6000篇新闻文章。新闻文章被分为四类——犯罪新闻、政治新闻、体育新闻和娱乐新闻。对决策树、支持向量机(SVM)和深度学习的分类算法进行了检验。性能由准确性、召回率、精度和F-Measure来衡量。结果表明,决策树、支持向量机和深度学习模型的准确率分别为86%、94%和95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信