Models of the macroseismic field earthquakes and their influence on seismic hazard assessment values for Central Asia

Pub Date : 2020-09-23 DOI:10.5800/gt-2020-11-3-0494
T. Artikov, R. Ibragimov, T. L. Ibragimova, M. Mirzaev
{"title":"Models of the macroseismic field earthquakes and their influence on seismic hazard assessment values for Central Asia","authors":"T. Artikov, R. Ibragimov, T. L. Ibragimova, M. Mirzaev","doi":"10.5800/gt-2020-11-3-0494","DOIUrl":null,"url":null,"abstract":"Seismic intensity assessment in points of a macroseismic scale plays an important role for researching the seismic history of areas characterized by active seismicity, as well as for construction (and updating) of seismic zoning maps in various scales. Macroseismic scale points are generally referred to in construction standards applied in the majority of post-Soviet states. In our study aimed to model the macroseismic field of earthquakes, a large volume of macroseismic data on Central Asia was analyzed, and coefficients used in Blake–Shebalin and Covesligeti equations were aligned. This article presents a generalized dependence model of macroseismic intensity attenuation with distance. The model takes into account seismic load features determined by various depths of earthquakes. The ratios of small and big axes of the ellipse, that approximates real isoseists, are estimated with respect to seismic scale points, earthquake depths and magnitudes. The East Uzbekistan area is studied as an example to investigate whether seismic hazard assessment values may differ depending on a chosen law of seismic influence intensity attenuation with distance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-3-0494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Seismic intensity assessment in points of a macroseismic scale plays an important role for researching the seismic history of areas characterized by active seismicity, as well as for construction (and updating) of seismic zoning maps in various scales. Macroseismic scale points are generally referred to in construction standards applied in the majority of post-Soviet states. In our study aimed to model the macroseismic field of earthquakes, a large volume of macroseismic data on Central Asia was analyzed, and coefficients used in Blake–Shebalin and Covesligeti equations were aligned. This article presents a generalized dependence model of macroseismic intensity attenuation with distance. The model takes into account seismic load features determined by various depths of earthquakes. The ratios of small and big axes of the ellipse, that approximates real isoseists, are estimated with respect to seismic scale points, earthquake depths and magnitudes. The East Uzbekistan area is studied as an example to investigate whether seismic hazard assessment values may differ depending on a chosen law of seismic influence intensity attenuation with distance.
分享
查看原文
中亚地区大地震场地震模型及其对地震危险性评价值的影响
大地震比例尺点地震烈度评价对于研究地震活动性地区的地震史,以及编制(更新)不同比例尺的地震区划图具有重要意义。在大多数后苏联国家应用的建筑标准中,通常提到宏观地震标度点。本文对中亚地区的大量大地震资料进行了分析,并对Blake-Shebalin方程和Covesligeti方程中使用的系数进行了校正。本文提出了一个广义的大地震烈度衰减随距离的依赖模型。该模型考虑了不同地震深度所决定的地震荷载特征。根据地震标度点、地震深度和震级,估计了与实际等震线近似的椭圆小轴和大轴的比值。以乌兹别克斯坦东部地区为例,探讨地震影响烈度随距离衰减规律的选择是否会导致地震危险性评价值的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信