Sub-Bergman Hilbert spaces on the unit disk III

Pub Date : 2023-02-03 DOI:10.4153/s0008414x23000494
S. Luo, Kehe Zhu
{"title":"Sub-Bergman Hilbert spaces on the unit disk III","authors":"S. Luo, Kehe Zhu","doi":"10.4153/s0008414x23000494","DOIUrl":null,"url":null,"abstract":"For a bounded analytic function $\\varphi$ on the unit disk $\\D$ with $\\|\\varphi\\|_\\infty\\le1$ we consider the defect operators $D_\\varphi$ and $D_{\\overline\\varphi}$ of the Toeplitz operators $T_\\varphi$ and $T_{\\overline\\varphi}$, respectively, on the weighted Bergman space $A^2_\\alpha$. The ranges of $D_\\varphi$ and $D_{\\overline\\varphi}$, written as $H(\\varphi)$ and $H(\\overline\\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\\alpha\\le0$ the space $H(\\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\\varphi$ is a M\\\"{o}bius map; for $\\alpha>-1$ we have $H(\\varphi)=H(\\overline\\varphi)=A^2_{\\alpha-1}$ if and only if the defect operators $D_\\varphi$ and $D_{\\overline\\varphi}$ are compact; and for $\\alpha>-1$ we have $D^2_\\varphi(A^2_\\alpha)= D^2_{\\overline\\varphi}(A^2_\\alpha)=A^2_{\\alpha-2}$ if and only if $\\varphi$ is a finite Blaschke product. In some sense our restrictions on $\\alpha$ here are best possible.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

For a bounded analytic function $\varphi$ on the unit disk $\D$ with $\|\varphi\|_\infty\le1$ we consider the defect operators $D_\varphi$ and $D_{\overline\varphi}$ of the Toeplitz operators $T_\varphi$ and $T_{\overline\varphi}$, respectively, on the weighted Bergman space $A^2_\alpha$. The ranges of $D_\varphi$ and $D_{\overline\varphi}$, written as $H(\varphi)$ and $H(\overline\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\alpha\le0$ the space $H(\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\varphi$ is a M\"{o}bius map; for $\alpha>-1$ we have $H(\varphi)=H(\overline\varphi)=A^2_{\alpha-1}$ if and only if the defect operators $D_\varphi$ and $D_{\overline\varphi}$ are compact; and for $\alpha>-1$ we have $D^2_\varphi(A^2_\alpha)= D^2_{\overline\varphi}(A^2_\alpha)=A^2_{\alpha-2}$ if and only if $\varphi$ is a finite Blaschke product. In some sense our restrictions on $\alpha$ here are best possible.
分享
查看原文
单位磁盘III上的subbergman Hilbert空间
对于具有$\|\varphi\|_\infty\le1$的单元盘$\D$上的有界解析函数$\varphi$,我们在加权Bergman空间$A^2_\alpha$上分别考虑Toeplitz算子$T_\varphi$和$T_{\overline\varphi}$的缺陷算子$D_\varphi$和$D_{\overline\varphi}$。$D_\varphi$和$D_{\overline\varphi}$的范围,写成$H(\varphi)$和$H(\overline\varphi)$并配上适当的内积,称为次伯格曼空间。本文证明了以下三个结果:对于$-1-1$,当且仅当缺陷算子$D_\varphi$和$D_{\overline\varphi}$是紧的,我们有$H(\varphi)=H(\overline\varphi)=A^2_{\alpha-1}$;对于$\alpha>-1$,我们有$D^2_\varphi(A^2_\alpha)= D^2_{\overline\varphi}(A^2_\alpha)=A^2_{\alpha-2}$当且仅当$\varphi$是有限Blaschke积。在某种意义上,我们对$\alpha$的限制是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信