Tensegrity representation of microtubule objects using unified particle objects and springs

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arif Pramudwiatmoko, G. Gutmann, Y. Ueno, A. Kakugo, M. Yamamura, A. Konagaya
{"title":"Tensegrity representation of microtubule objects using unified particle objects and springs","authors":"Arif Pramudwiatmoko, G. Gutmann, Y. Ueno, A. Kakugo, M. Yamamura, A. Konagaya","doi":"10.1273/cbij.20.19","DOIUrl":null,"url":null,"abstract":"There are limitations in interactions with molecular objects in laboratory experiments due to the very small size of the objects. Common media to show the experimental results of molecular objects is still lack of observer interaction to understand it intuitively. In order to overcome this lack of interaction, this research takes tensegrity representation of molecular objects reproducing experimental results and creates interactive 3D objects to be presented in a virtual reality (VR) environment. The tensegrity representation enables us to enhance the interaction experience with the natural user interface with haptic technology and hand tracking controller. A particle simulation system that utilizes multiple GPUs resources is used to fulfill haptic VR requirements. We developed a unified particle object model using springs and particles which we call anchors which act as tensegrity structure of the object to support conformation of filament-type objects such as microtubules. Some object parameters can be set to match the flexural rigidity of the object with some experimental results. The bending shape of the object is evaluated using the classic bending equation and the results show high compatibility. Viscoelastic behavior also shows similarities with the viscosity reported in other studies. The object's flexural rigidity can be adjusted to match the target value with the direction of the prediction equation. The object model provides a better insight about molecular objects with natural and real-time interactions to provide a more intuitive understanding with the molecular objects presented. The results show that this model can also be applied to any filament-type or rod-like molecular object. Chem-Bio Informatics Journal, Vol.20, pp.19–43 (2020) 20","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/cbij.20.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

There are limitations in interactions with molecular objects in laboratory experiments due to the very small size of the objects. Common media to show the experimental results of molecular objects is still lack of observer interaction to understand it intuitively. In order to overcome this lack of interaction, this research takes tensegrity representation of molecular objects reproducing experimental results and creates interactive 3D objects to be presented in a virtual reality (VR) environment. The tensegrity representation enables us to enhance the interaction experience with the natural user interface with haptic technology and hand tracking controller. A particle simulation system that utilizes multiple GPUs resources is used to fulfill haptic VR requirements. We developed a unified particle object model using springs and particles which we call anchors which act as tensegrity structure of the object to support conformation of filament-type objects such as microtubules. Some object parameters can be set to match the flexural rigidity of the object with some experimental results. The bending shape of the object is evaluated using the classic bending equation and the results show high compatibility. Viscoelastic behavior also shows similarities with the viscosity reported in other studies. The object's flexural rigidity can be adjusted to match the target value with the direction of the prediction equation. The object model provides a better insight about molecular objects with natural and real-time interactions to provide a more intuitive understanding with the molecular objects presented. The results show that this model can also be applied to any filament-type or rod-like molecular object. Chem-Bio Informatics Journal, Vol.20, pp.19–43 (2020) 20
使用统一粒子对象和弹簧的微管对象的张拉整体表示
在实验室实验中,由于物体的体积非常小,与分子物体的相互作用受到限制。常用介质来显示分子物体的实验结果,仍然缺乏观察者的相互作用来直观地理解它。为了克服这种缺乏交互性的问题,本研究采用再现实验结果的分子物体的张拉整体表示,并创建可交互的3D物体,在虚拟现实(VR)环境中呈现。张拉整体表示使我们能够通过触觉技术和手部跟踪控制器增强与自然用户界面的交互体验。利用多个gpu资源的粒子模拟系统来满足触觉VR的要求。我们开发了一个统一的粒子物体模型,使用弹簧和粒子,我们称之为锚,作为物体的张拉整体结构,以支持微管等细丝型物体的构象。根据实验结果,可以设置物体的一些参数来匹配物体的弯曲刚度。利用经典弯曲方程对物体的弯曲形状进行了计算,结果显示出较高的相容性。粘弹性行为也显示出与其他研究报告的粘度相似之处。可以调整物体的抗弯刚度,使其与预测方程的方向相匹配。对象模型通过自然和实时的交互提供了对分子对象的更好的洞察,从而对所呈现的分子对象提供了更直观的理解。结果表明,该模型也适用于任何丝状或棒状分子物体。生物信息学杂志,Vol.20, pp.19-43 (2020
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信