{"title":"Development of Algorithm Patterns for Identifying the Time of Abnormal Low Temperature Generation","authors":"Jeongwon Lee, Choong Ho Lee","doi":"10.22678/jic.2023.21.8.043","DOIUrl":null,"url":null,"abstract":"ㅤ Since 2018, due to climate change, heat waves and cold waves have caused gradual damage to social infrastructure. Since the damage caused by cold weather has increased every year due to climate change in recent 4 years, the damage that was limited to a specific area is now appearing all over the country, and a lot of efforts are being concentrated from experts in various fields to minimize this. However, it is not easy to study real-time observation of sudden abnormal low temperature in existing studies to reflect local characteristics in discontinuously measured data. In this study, based on the weather-related data that affects the occurrence of cold-weather damage, we developed an algorithm pattern that can identify the time when abnormal cold temperatures occurred after searching for weather patterns at the time of cold-weather damage. The results of this study are expected to be of great help to the related field in that it is possible to confirm the time when the abnormal low temperature occurs due to the data generated in real time without relying on the past data.","PeriodicalId":15984,"journal":{"name":"Journal of Industrial Convergence","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22678/jic.2023.21.8.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ㅤ Since 2018, due to climate change, heat waves and cold waves have caused gradual damage to social infrastructure. Since the damage caused by cold weather has increased every year due to climate change in recent 4 years, the damage that was limited to a specific area is now appearing all over the country, and a lot of efforts are being concentrated from experts in various fields to minimize this. However, it is not easy to study real-time observation of sudden abnormal low temperature in existing studies to reflect local characteristics in discontinuously measured data. In this study, based on the weather-related data that affects the occurrence of cold-weather damage, we developed an algorithm pattern that can identify the time when abnormal cold temperatures occurred after searching for weather patterns at the time of cold-weather damage. The results of this study are expected to be of great help to the related field in that it is possible to confirm the time when the abnormal low temperature occurs due to the data generated in real time without relying on the past data.