Hazem E. Ghoneim, Yiping Fan, A. Moustaki, Hossam A. Abdelsamed, P. Dash, P. Dogra, R. Carter, Walid Awad, G. Neale, P. Thomas, Ben Youngblood
{"title":"Abstract A26: De novo epigenetic programming restrains PD-1 blockade-mediated T cell rejuvenation","authors":"Hazem E. Ghoneim, Yiping Fan, A. Moustaki, Hossam A. Abdelsamed, P. Dash, P. Dogra, R. Carter, Walid Awad, G. Neale, P. Thomas, Ben Youngblood","doi":"10.1158/2326-6074.TUMIMM17-A26","DOIUrl":null,"url":null,"abstract":"Immune checkpoint blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. Given that many of the impaired effector properties of terminally exhausted CD8 T cells appear to be heritably maintained even in the absence of antigen, we investigated the role of de novo DNA methylation programming as a cell-intrinsic mechanism for establishing the ICB-nonresponsive state of T-cell exhaustion. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells. Therapeutic approaches to reverse these programs can enhance ICB-mediated T cell rejuvenation and ultimately facilitate the control of chronic viral infections and tumor growth. These data establish de novo DNA methylation programming as a regulator of T cell exhaustion and barrier of ICB therapy. Citation Format: Hazem E. Ghoneim, Yiping Fan, Ardiana Moustaki, Hossam Abdelsamed, Pradyot Dash, Pranay Dogra, Robert Carter, Walid Awad, Geoff Neale, Paul G. Thomas, Ben Youngblood. De novo epigenetic programming restrains PD-1 blockade-mediated T cell rejuvenation [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2017 Oct 1-4; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2018;6(9 Suppl):Abstract nr A26.","PeriodicalId":9948,"journal":{"name":"Checkpoints and Immunomodulation","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Checkpoints and Immunomodulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.TUMIMM17-A26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. Given that many of the impaired effector properties of terminally exhausted CD8 T cells appear to be heritably maintained even in the absence of antigen, we investigated the role of de novo DNA methylation programming as a cell-intrinsic mechanism for establishing the ICB-nonresponsive state of T-cell exhaustion. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells. Therapeutic approaches to reverse these programs can enhance ICB-mediated T cell rejuvenation and ultimately facilitate the control of chronic viral infections and tumor growth. These data establish de novo DNA methylation programming as a regulator of T cell exhaustion and barrier of ICB therapy. Citation Format: Hazem E. Ghoneim, Yiping Fan, Ardiana Moustaki, Hossam Abdelsamed, Pradyot Dash, Pranay Dogra, Robert Carter, Walid Awad, Geoff Neale, Paul G. Thomas, Ben Youngblood. De novo epigenetic programming restrains PD-1 blockade-mediated T cell rejuvenation [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2017 Oct 1-4; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2018;6(9 Suppl):Abstract nr A26.