Divisions selon les puissances fractionnaires d'un idéal engendré par une suite régulière dans l'anneau des germes à l'origine de fonctions holomorphes sur C2

Jamil Sawaya
{"title":"Divisions selon les puissances fractionnaires d'un idéal engendré par une suite régulière dans l'anneau des germes à l'origine de fonctions holomorphes sur C2","authors":"Jamil Sawaya","doi":"10.1016/S0764-4442(01)02086-9","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the ring of germs of analytic functions at the origin of <span><math><mtext>C</mtext><msup><mi></mi><mn>2</mn></msup></math></span>. Let <em>I</em> be an ideal of this ring, and let us denote by <span><math><mtext>I</mtext></math></span>, the integral closure of this ideal. J. Lipman and B. Teissier proved that the following formula: <span><math><mtext>I</mtext><msup><mi></mi><mn>n+1</mn></msup><mtext>=</mtext><mtext>I</mtext><mtext>·I</mtext><msup><mi></mi><mn>n</mn></msup></math></span>, holds for every integer <em>n</em>. In this paper, we discuss, under certain condition over <em>I</em>, of a similar formula for the fractional powers of <em>I</em>.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 991-994"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02086-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider the ring of germs of analytic functions at the origin of C2. Let I be an ideal of this ring, and let us denote by I, the integral closure of this ideal. J. Lipman and B. Teissier proved that the following formula: In+1=I·In, holds for every integer n. In this paper, we discuss, under certain condition over I, of a similar formula for the fractional powers of I.

根据C2上全纯函数起源的芽环中规则序列所产生的理想的分数次幂进行划分
考虑解析函数在C2原点处的胚芽环。设I是这个环的一个理想,用I表示这个理想的整闭包。J. Lipman和B. Teissier证明了以下公式:In+1=I·In对每一个整数n都成立。本文讨论了在一定条件下I的分数阶幂的类似公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信