Divisions selon les puissances fractionnaires d'un idéal engendré par une suite régulière dans l'anneau des germes à l'origine de fonctions holomorphes sur C2
{"title":"Divisions selon les puissances fractionnaires d'un idéal engendré par une suite régulière dans l'anneau des germes à l'origine de fonctions holomorphes sur C2","authors":"Jamil Sawaya","doi":"10.1016/S0764-4442(01)02086-9","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the ring of germs of analytic functions at the origin of <span><math><mtext>C</mtext><msup><mi></mi><mn>2</mn></msup></math></span>. Let <em>I</em> be an ideal of this ring, and let us denote by <span><math><mtext>I</mtext></math></span>, the integral closure of this ideal. J. Lipman and B. Teissier proved that the following formula: <span><math><mtext>I</mtext><msup><mi></mi><mn>n+1</mn></msup><mtext>=</mtext><mtext>I</mtext><mtext>·I</mtext><msup><mi></mi><mn>n</mn></msup></math></span>, holds for every integer <em>n</em>. In this paper, we discuss, under certain condition over <em>I</em>, of a similar formula for the fractional powers of <em>I</em>.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 991-994"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02086-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Consider the ring of germs of analytic functions at the origin of . Let I be an ideal of this ring, and let us denote by , the integral closure of this ideal. J. Lipman and B. Teissier proved that the following formula: , holds for every integer n. In this paper, we discuss, under certain condition over I, of a similar formula for the fractional powers of I.