{"title":"Ductile void growing in micromorphic GLPD porous plastic solids containing two populations of cavities with different sizes","authors":"R. Burson, K. Enakoutsa","doi":"10.2140/memocs.2022.10.395","DOIUrl":null,"url":null,"abstract":"Gologanu, Leblond, Perrin, and Devaux (GLPD) developed a constitutive model for ductile fracture for porous metals based on generalized continuum mechanics assump-tions. The model predicted with high accuracy ductile fracture process in porous metals subjected to several complex loads. The GLDP model performances over its competitors has attracted the attention of several authors who explored additional capabilities of the model. This paper provides analytical solutions for the problem of a porous hollow sphere subjected to hydrostatic loadings, the matrix of the hollow sphere obeying the GLPD model. The exact solution for the expressions of the stress and the generalized stress the GLPD model involved are illustrated for the case where the matrix material does not contain any voids. The results show that the singularities obtained in the stress distribution with the local Gurson model are smoothed out, as expected with any generalized continuum model. The paper also presents some elements of the analytical solution for the case where the matrix is porous and obeys the full GLPD model at the initial time when the porosity is fixed. The later analytical solution can serve to predict the mechanisms of ductile fracture in porous ductile solids with two populations of cavities with different sizes.","PeriodicalId":45078,"journal":{"name":"Mathematics and Mechanics of Complex Systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/memocs.2022.10.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gologanu, Leblond, Perrin, and Devaux (GLPD) developed a constitutive model for ductile fracture for porous metals based on generalized continuum mechanics assump-tions. The model predicted with high accuracy ductile fracture process in porous metals subjected to several complex loads. The GLDP model performances over its competitors has attracted the attention of several authors who explored additional capabilities of the model. This paper provides analytical solutions for the problem of a porous hollow sphere subjected to hydrostatic loadings, the matrix of the hollow sphere obeying the GLPD model. The exact solution for the expressions of the stress and the generalized stress the GLPD model involved are illustrated for the case where the matrix material does not contain any voids. The results show that the singularities obtained in the stress distribution with the local Gurson model are smoothed out, as expected with any generalized continuum model. The paper also presents some elements of the analytical solution for the case where the matrix is porous and obeys the full GLPD model at the initial time when the porosity is fixed. The later analytical solution can serve to predict the mechanisms of ductile fracture in porous ductile solids with two populations of cavities with different sizes.
期刊介绍:
MEMOCS is a publication of the International Research Center for the Mathematics and Mechanics of Complex Systems. It publishes articles from diverse scientific fields with a specific emphasis on mechanics. Articles must rely on the application or development of rigorous mathematical methods. The journal intends to foster a multidisciplinary approach to knowledge firmly based on mathematical foundations. It will serve as a forum where scientists from different disciplines meet to share a common, rational vision of science and technology. It intends to support and divulge research whose primary goal is to develop mathematical methods and tools for the study of complexity. The journal will also foster and publish original research in related areas of mathematics of proven applicability, such as variational methods, numerical methods, and optimization techniques. Besides their intrinsic interest, such treatments can become heuristic and epistemological tools for further investigations, and provide methods for deriving predictions from postulated theories. Papers focusing on and clarifying aspects of the history of mathematics and science are also welcome. All methodologies and points of view, if rigorously applied, will be considered.