Sonar-to-Satellite Translation using Deep Learning

G. G. Giacomo, M. Santos, Paulo L. J. Drews-Jr, S. Botelho
{"title":"Sonar-to-Satellite Translation using Deep Learning","authors":"G. G. Giacomo, M. Santos, Paulo L. J. Drews-Jr, S. Botelho","doi":"10.1109/ICMLA.2018.00074","DOIUrl":null,"url":null,"abstract":"Sonar images pose hindrances when being elucidated for applications such as underwater navigation and localization. On the other hand, satellite images are simpler to be interpreted, but require GPS that is unavailable underwater due to absorption phenomena. Thus, we propose a neural network capable of translating an acoustic image acquired underwater to a textured image. We called the process sonar-to-satellite translation. We adopted a state-of-the-art neural architecture on a dataset comprised of sonar data and their respective satellite images. The experimental results show our method can extract interesting features from acoustic images and generate an informative texture image.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"4 1","pages":"454-459"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sonar images pose hindrances when being elucidated for applications such as underwater navigation and localization. On the other hand, satellite images are simpler to be interpreted, but require GPS that is unavailable underwater due to absorption phenomena. Thus, we propose a neural network capable of translating an acoustic image acquired underwater to a textured image. We called the process sonar-to-satellite translation. We adopted a state-of-the-art neural architecture on a dataset comprised of sonar data and their respective satellite images. The experimental results show our method can extract interesting features from acoustic images and generate an informative texture image.
使用深度学习的声纳到卫星翻译
声纳图像在阐明水下导航和定位等应用时存在障碍。另一方面,卫星图像更容易解释,但由于吸收现象,需要GPS,而GPS在水下是不可用的。因此,我们提出了一种能够将水下获得的声学图像转换为纹理图像的神经网络。我们把这个过程称为声纳到卫星的转换。我们在声纳数据和各自的卫星图像组成的数据集上采用了最先进的神经系统架构。实验结果表明,该方法可以从声学图像中提取出有趣的特征,生成信息丰富的纹理图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信