PerfGuard: binary-centric application performance monitoring in production environments

C. Kim, J. Rhee, K. H. Lee, X. Zhang, Dongyan Xu
{"title":"PerfGuard: binary-centric application performance monitoring in production environments","authors":"C. Kim, J. Rhee, K. H. Lee, X. Zhang, Dongyan Xu","doi":"10.1145/2950290.2950347","DOIUrl":null,"url":null,"abstract":"Diagnosis of performance problems is an essential part of software development and maintenance. This is in particular a challenging problem to be solved in the production environment where only program binaries are available with limited or zero knowledge of the source code. This problem is compounded by the integration with a significant number of third-party software in most large-scale applications. Existing approaches either require source code to embed manually constructed logic to identify performance problems or support a limited scope of applications with prior manual analysis. This paper proposes an automated approach to analyze application binaries and instrument the binary code transparently to inject and apply performance assertions on application transactions. Our evaluation with a set of large-scale application binaries without access to source code discovered 10 publicly known real world performance bugs automatically and shows that PerfGuard introduces very low overhead (less than 3% on Apache and MySQL server) to production systems.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"485 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2950347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Diagnosis of performance problems is an essential part of software development and maintenance. This is in particular a challenging problem to be solved in the production environment where only program binaries are available with limited or zero knowledge of the source code. This problem is compounded by the integration with a significant number of third-party software in most large-scale applications. Existing approaches either require source code to embed manually constructed logic to identify performance problems or support a limited scope of applications with prior manual analysis. This paper proposes an automated approach to analyze application binaries and instrument the binary code transparently to inject and apply performance assertions on application transactions. Our evaluation with a set of large-scale application binaries without access to source code discovered 10 publicly known real world performance bugs automatically and shows that PerfGuard introduces very low overhead (less than 3% on Apache and MySQL server) to production systems.
PerfGuard:生产环境中以二进制为中心的应用程序性能监控
性能问题的诊断是软件开发和维护的重要组成部分。这在生产环境中是一个特别具有挑战性的问题,因为只有程序二进制文件可用,对源代码的了解有限或为零。在大多数大型应用程序中,与大量第三方软件的集成使这个问题更加复杂。现有的方法要么需要源代码嵌入人工构造的逻辑来识别性能问题,要么需要事先进行人工分析来支持有限范围的应用程序。本文提出了一种自动化的方法来分析应用程序二进制文件,并透明地检测二进制代码,以便在应用程序事务中注入和应用性能断言。我们在不访问源代码的情况下对一组大规模应用程序二进制文件进行了评估,自动发现了10个公开的现实世界性能错误,并表明PerfGuard给生产系统带来了非常低的开销(在Apache和MySQL服务器上不到3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信