{"title":"Taguchi Method for Design and Optimization of a High-Speed Permanent Magnet Synchronous Generator Protected by Retention Sleeve","authors":"H. Parivar, A. Darabi","doi":"10.11648/j.eas.20220702.12","DOIUrl":null,"url":null,"abstract":": High-speed permanent magnet synchronous generators (HS-PMSGs) suffer from mechanical stresses due to high speeds. With the predicted mechanical stresses that may occur in the rotor of the HS-PMSGs, the design of these machines should be very accurate. So, for the HS-PMSGs, a proper electromagnetic coupled with mechanical design is a critical issue. This paper presents a novel method for the electromagnetic and mechanical design of an HS-PMSG by finding an appropriate dimension of the retention sleeve and permanent magnets (PMs) based on the well-known Taguchi optimization method. A 40-kW, 60-krpm, 2-poles and 18-slots HS-PMSG is designed at the first step","PeriodicalId":15681,"journal":{"name":"Journal of Engineering and Applied Sciences","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.eas.20220702.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: High-speed permanent magnet synchronous generators (HS-PMSGs) suffer from mechanical stresses due to high speeds. With the predicted mechanical stresses that may occur in the rotor of the HS-PMSGs, the design of these machines should be very accurate. So, for the HS-PMSGs, a proper electromagnetic coupled with mechanical design is a critical issue. This paper presents a novel method for the electromagnetic and mechanical design of an HS-PMSG by finding an appropriate dimension of the retention sleeve and permanent magnets (PMs) based on the well-known Taguchi optimization method. A 40-kW, 60-krpm, 2-poles and 18-slots HS-PMSG is designed at the first step