A Geometrical Regularity Criterion in Terms of Velocity Profiles for the Three-Dimensional Navier–Stokes Equations

IF 0.8
C. Tran, Xinwei Yu
{"title":"A Geometrical Regularity Criterion in Terms of Velocity Profiles for the Three-Dimensional Navier–Stokes Equations","authors":"C. Tran, Xinwei Yu","doi":"10.1093/qjmam/hbz018","DOIUrl":null,"url":null,"abstract":"\n In this article, we present a new kind of regularity criteria for the global well-posedness problem of the three-dimensional Navier–Stokes equations in the whole space. The novelty of the new results is that they involve only the profiles of the magnitude of the velocity. One particular consequence of our theorem is as follows. If for every fixed $t\\in (0,T)$, the ‘large velocity’ region $\\Omega:=\\{(x,t)\\mid |u(x,t)|>C(q)\\left|\\mkern-2mu\\left|{u}\\right|\\mkern-2mu\\right|_{L^{3q-6}}\\}$, for some $C(q)$ appropriately defined, shrinks fast enough as $q\\nearrow \\infty$, then the solution remains regular beyond $T$. We examine and discuss velocity profiles satisfying our criterion. It remains to be seen whether these profiles are typical of general Navier–Stokes flows.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbz018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we present a new kind of regularity criteria for the global well-posedness problem of the three-dimensional Navier–Stokes equations in the whole space. The novelty of the new results is that they involve only the profiles of the magnitude of the velocity. One particular consequence of our theorem is as follows. If for every fixed $t\in (0,T)$, the ‘large velocity’ region $\Omega:=\{(x,t)\mid |u(x,t)|>C(q)\left|\mkern-2mu\left|{u}\right|\mkern-2mu\right|_{L^{3q-6}}\}$, for some $C(q)$ appropriately defined, shrinks fast enough as $q\nearrow \infty$, then the solution remains regular beyond $T$. We examine and discuss velocity profiles satisfying our criterion. It remains to be seen whether these profiles are typical of general Navier–Stokes flows.
三维Navier-Stokes方程速度分布的几何规则准则
本文给出了三维Navier-Stokes方程在全空间上全局适定性问题的一种新的正则性准则。新结果的新奇之处在于它们只涉及速度大小的轮廓。我们定理的一个特殊推论如下。如果对于每个固定的$t\in (0,T)$,“大速度”区域$\Omega:=\{(x,t)\mid |u(x,t)|>C(q)\left|\mkern-2mu\left|{u}\right|\mkern-2mu\right|_{L^{3q-6}}\}$,对于某些适当定义的$C(q)$,收缩得足够快为$q\nearrow \infty$,那么解决方案在$T$之外仍然是规则的。我们考察并讨论了满足我们准则的速度剖面。这些剖面是否是典型的一般纳维-斯托克斯流还有待观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信