Intelligent Wheelchair Control System Based on Finger Pose Recognition

Iswahyudi, K. Anam, Azmi Saleh
{"title":"Intelligent Wheelchair Control System Based on Finger Pose Recognition","authors":"Iswahyudi, K. Anam, Azmi Saleh","doi":"10.23919/EECSI50503.2020.9251907","DOIUrl":null,"url":null,"abstract":"In the old day, wheelchairs are moved manually by using hand or with the assistance of someone else. Users of this wheelchair get tired quickly if they have to walk long distances. The electric wheelchair emerged as a form of innovation and development for the manual wheelchair. This paper presented the control system of the electric wheelchair based on finger poses using the Convolutional Neural Network (CNN). The camera is used to take pictures of five-finger poses. Images are selected only in certain sections using Region of Interest (ROI). The five-finger poses represent the movement of the electric wheelchair to stop, right, left, forward, and backward. The experimental results indicated that the accuracy of the finger pose detection is about 93.6%. Therefore, the control system using CNN can be a potential solution for an electric wheelchair.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"33 1","pages":"257-261"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the old day, wheelchairs are moved manually by using hand or with the assistance of someone else. Users of this wheelchair get tired quickly if they have to walk long distances. The electric wheelchair emerged as a form of innovation and development for the manual wheelchair. This paper presented the control system of the electric wheelchair based on finger poses using the Convolutional Neural Network (CNN). The camera is used to take pictures of five-finger poses. Images are selected only in certain sections using Region of Interest (ROI). The five-finger poses represent the movement of the electric wheelchair to stop, right, left, forward, and backward. The experimental results indicated that the accuracy of the finger pose detection is about 93.6%. Therefore, the control system using CNN can be a potential solution for an electric wheelchair.
基于手指姿态识别的智能轮椅控制系统
在过去,轮椅是用手或在别人的帮助下手动移动的。如果要走很远的路,这种轮椅的使用者很快就会疲劳。电动轮椅的出现是对手动轮椅的一种创新和发展。提出了一种基于手指姿态的卷积神经网络(CNN)电动轮椅控制系统。相机是用来拍五指姿势的。使用感兴趣区域(ROI)仅在某些部分选择图像。五指姿势代表电动轮椅的停止、右、左、前、后运动。实验结果表明,手指姿态检测的准确率约为93.6%。因此,使用CNN的控制系统可以成为电动轮椅的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信