There is no recursive axiomatization for feasible functionals of type 2

Anil Seth
{"title":"There is no recursive axiomatization for feasible functionals of type 2","authors":"Anil Seth","doi":"10.1109/LICS.1992.185541","DOIUrl":null,"url":null,"abstract":"The author shows a class of type-two feasible functionals, C/sub 2/, that satisfies Cook's conditions, (1990) and cannot be expressed as the lambda closure of type-one poly-time functions and any recursively enumerable set of type-two feasible functionals. Further, no class of total type-two functionals containing this class is representable as the lambda closure of a recursively enumerable set of type-two total computable functionals and type-one poly-time functions. The definition of C/sub 2/ provides a clear computational procedure for functionals of C/sub 2/. Using functionals of class C/sub 2/ a more general notion of polynomial-time reducibility between two arbitrary type-one functions can be introduced.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"76 1","pages":"286-295"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The author shows a class of type-two feasible functionals, C/sub 2/, that satisfies Cook's conditions, (1990) and cannot be expressed as the lambda closure of type-one poly-time functions and any recursively enumerable set of type-two feasible functionals. Further, no class of total type-two functionals containing this class is representable as the lambda closure of a recursively enumerable set of type-two total computable functionals and type-one poly-time functions. The definition of C/sub 2/ provides a clear computational procedure for functionals of C/sub 2/. Using functionals of class C/sub 2/ a more general notion of polynomial-time reducibility between two arbitrary type-one functions can be introduced.<>
二类可行泛函没有递归公理化
作者给出了一类二类可行泛函C/ sub2 /,它满足Cook的条件,(1990),不能表示为一类多时函数的lambda闭包和任何递归可枚举的二类可行泛函集。此外,包含此类的总类型二函数的任何类都不能表示为递归可枚举的二类总可计算函数和一类多时间函数集合的lambda闭包。C/sub 2/的定义为C/sub 2/的泛函提供了一个清晰的计算过程。利用C/ sub2 /类泛函,可以引入两个任意一类函数之间的多项式时间可约性的更一般的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信