TESLA: Taylor expanded solar analog forecasting

B. O. Akyurek, A. S. Akyurek, J. Kleissl, T. Simunic
{"title":"TESLA: Taylor expanded solar analog forecasting","authors":"B. O. Akyurek, A. S. Akyurek, J. Kleissl, T. Simunic","doi":"10.1109/SmartGridComm.2014.7007634","DOIUrl":null,"url":null,"abstract":"With the increasing penetration of renewable energy resources within the Smart Grid, solar forecasting has become an important problem for hour-ahead and day-ahead planning. Within this work, we analyze the Analog Forecast method family, which uses past observations to improve the forecast product. We first show that the frequently used euclidean distance metric has drawbacks and leads to poor performance relatively. In this paper, we introduce a new method, TESLA forecasting, which is very fast and light, and we show through case studies that we can beat the persistence method, a state of the art comparison method, by up-to 50% in terms of root mean square error to give an accurate forecasting result. An extension is also provided to improve the forecast accuracy by decreasing the forecast horizon.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"40 1","pages":"127-132"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

With the increasing penetration of renewable energy resources within the Smart Grid, solar forecasting has become an important problem for hour-ahead and day-ahead planning. Within this work, we analyze the Analog Forecast method family, which uses past observations to improve the forecast product. We first show that the frequently used euclidean distance metric has drawbacks and leads to poor performance relatively. In this paper, we introduce a new method, TESLA forecasting, which is very fast and light, and we show through case studies that we can beat the persistence method, a state of the art comparison method, by up-to 50% in terms of root mean square error to give an accurate forecasting result. An extension is also provided to improve the forecast accuracy by decreasing the forecast horizon.
特斯拉:泰勒扩展了太阳模拟预测
随着可再生能源在智能电网中的渗透率不断提高,太阳能预测已成为小时前和日前规划的一个重要问题。在这项工作中,我们分析了模拟预测方法族,它利用过去的观测来改进预测产品。我们首先证明了常用的欧氏距离度量存在缺陷,导致相对较差的性能。在本文中,我们引入了一种新的方法,特斯拉预测,这是非常快速和轻量级的,我们通过案例研究表明,我们可以击败持久性方法,一种最先进的比较方法,在均方根误差方面高达50%,以给出准确的预测结果。本文还提供了一种通过减小预测范围来提高预测精度的扩展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信